
Bandit Algorithms: Fairness, Welfare, and Applications in

Causal Inference

A THESIS

SUBMITTED FOR THE DEGREE OF

Master of Technology (Research)

IN THE

Faculty of Engineering

BY

Ayush Sawarni

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

November, 2023

Declaration of Originality

I, Ayush Sawarni, with SR No. 19776 hereby declare that the material presented in the

thesis titled

Bandit Algorithms: Fairness, Welfare and Applications in Causal Inference

represents original work carried out by me in the Department of Computer Science and

Automation at Indian Institute of Science during the years 2022 - 2023.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Advisor Signature

1

© Your Name

November, 2023

All rights reserved

DEDICATED TO

Mummy, Papa and Boku

Acknowledgements

I would like to begin this note of thanks by expressing my deep gratitude towards my advisor,

Prof. Siddharth Barman. He has not only taught me the art of research but has also helped

me appreciate the beauty in simple and elegant ideas. I consider myself extremely fortunate

to have him as a mentor at this pivotal stage in my career. He strikes the perfect balance

between being a mentor and an advisor. I can firmly state that my approach to every new

research problem is profoundly influenced by what I have learned from him. While many can

explain a proof, there are few who can artfully teach how to devise one – a skill I’ve observed

him demonstrate even in his courses. I aspire to emulate these invaluable skills in my academic

career going forward.

I extend my sincere thanks to Prof. Arindam Khan for his invaluable guidance and support.

His dedication to teaching is truly amazing, and I have gained much from his courses, including

those I experienced through online videos. Additionally, I am grateful for the thoughtful advice

he provided about my future plans, always making time for me despite his busy schedule.

I am grateful to Dr. Gaurav Sinha and Dr. Soumyabrata Pal for their incredible collaboration

and the opportunity to work with industry labs. Special thanks to Gaurav for his invaluable

mentorship and guidance in shaping my career path, as well as his insightful discussions on the

philosophy of research.

I thank the CSA department for their role in my growth, particularly Professors Chiran-

jib Bhattacharya, Gugan Thoppe, Shalabh Bhatnagar, and Anand Louis for their exceptional

courses. My appreciation also goes to the CSA office staff, especially Kushael Madam, Padma-

vathi Madam, and Shubha Madam, for their indispensable support with administrative tasks.

Finally, I am fortunate to have collaborated with brilliant students. My heartfelt thanks

to Arnab Maiti for his enthusiasm and motivation in our joint project, which stands out as

a highlight of my time at IISc. I also cherish my productive collaboration with Nirjhar Das

towards the end of my Masters and thank him for the enriching technical discussions.

A special mention goes to my labmates. I thank Shraddha for some of the most memorable

conversations I’ve had on campus which, somewhat mysteriously, always took an unexpected

i

Acknowledgements

turn from academic/philosophical questions to the existential question of “whats the Marathi

name of that food?”. I’m grateful to Debajyoti for all the Table Tennis sessions; he was an

amazing captain, steering our team through victories, albeit from the comfort of his home.

A big thanks to Manisha, a passionate pictionary player and the official Mentos supplier of

the lab, ensuring our lab never faced a mint shortage crisis. Finally, I want to thank Kiran

Shiragur for being an amazing mentor, the lab clown, and an inspirational researcher. Our

philosophical discussions on research has helped me tremendouly in evaluating my own work. I

thank Siddharth (an unofficial member of the lab), whose endless, mind-numbing debates and

talent for countering every statement I made kept my mind sharp.

I’m grateful for the wonderful friendships I’ve formed at the department. I thank Aditya(s),

Atasi, Arka, KVN, Rishikesh, and Rahul for being a fantastic peer group. I treasure our

discussions over coffee, fish bowl sessions, and during theory lunches. I thank Anand, Shravani,

and Vishakha for introducing me to amazing food and restaurants, and for being there whenever

I needed support and advice. Sharing a passion for mangoes with them was a delightful bonus.

Outside the department, my friends from S-Block - Ayush, Keshav, Shreya, and Sneha -

played a crucial role in ensuring I maintained a balance, preventing burnout, and encouraging

occasional breaks. I also want to extend my gratitude to my undergrad friends from BITS Pilani

- Rishabh, Ankur, Rhythm, Aakanksha, and Abhinav - who generously hosted me during my

visits to California.

Finally, my deepest gratitude goes to my parents and my brother for their unwavering

support and sacrifices. I am who I am today largely because of them. Their selflessness inspires

me daily, and I can’t imagine where I would be without their constant encouragement.

ii

Abstract

This thesis explores different aspects of regret in online learning and its applications. We

introduce Nash regret, which measures the difference between the optimal action choices and

the algorithm’s performance in terms of the Nash social welfare function. By providing bounds

on Nash regret, we establish principled fairness guarantees for online learning algorithms. We

investigate different online learning settings and derive tight bounds on Nash regret.

In the first part, we focus on the classic multi-armed bandit (MAB) framework and develop

an algorithm that achieves a tight Nash regret bound. Specifically, given a horizon of play T ,

our algorithm achieves a Nash regret of O

(√
k log T

T

)
, where k represents the number of arms

in the MAB instance. The lower bound on average regret applies to Nash regret as well, making

our guarantee essentially tight. Additionally, we propose an anytime algorithm with a Nash

regret guarantee of O

(√
k log T

T
log T

)
.

In the second part, we study the stochastic linear bandits problem with non-negative, ν-sub

Poisson rewards. We present an algorithm that achieves a Nash regret bound ofO
(√

dν
T
log(T |X|)

)
,

where X denotes the set of arms in ambient dimension d and T represents the number of rounds.

Furthermore, for linear bandit instances with potentially infinite arm sets, we derive a Nash re-

gret upper bound of O
(

d5/4ν1/2√
T

log(T)
)
. Our algorithm builds upon the successive elimination

method and incorporates novel techniques such as tailored concentration bounds and sampling

via the John ellipsoid in conjunction with the Kiefer-Wolfowitz optimal design.

In the third part, we investigate Nash regret in the context of online concave optimization

and the Expert’s problem, assuming adversarially chosen reward functions. Our algorithm

achieves Nash Regret of O
(
logN
T

)
for the Expert’s problem where N is the number of experts.

We provide a lower bound for this setting that is essentially tight with respect to the upper

bound. Additionally, for online concave optimization, we provide a Nash regret guarantee of

O
(
d log T

T

)
, where d denotes the ambient dimension.

In the final part of this thesis, we focus on the causal bandit problem, which involves iden-

tifying near-optimal interventions in a causal graph. Previous works have provided a bound of

iii

Abstract

Õ(N/
√
T) for simple regret for causal graphs with N vertices, constant in-degree, and Bernoulli

random variables. In this thesis, we present a new approach for exploration using covering in-

terventions. This allows us to achieve a significant improvement and provide a tighter simple

regret guarantee of Õ(
√

N/T). Furthermore, we extend our algorithm to handle the most

general case of causal graphs with unobservable variables.

iv

Publications based on this Thesis

1. Fairness and Welfare Quantification for Regret in Multi-armed Bandits

Joint work with Siddharth Barman, Arindam Khan, and Arnab Maiti.

Proceedings of the AAAI Conference on Artificial Intelligence (AAAI 2023)

2. Learning Good Interventions in Causal Graphs via Covering

Joint work with Siddharth Barman, Rahul Madhavan, and Gaurav Sinha.

Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI

2023)

3. Nash Regret Bounds for Linear Bandits

Joint work with Siddharth Barman, Soumyabrata Pal.

To appear in the Thirty-Seventh Conference on Neural Information Processing Systems

(NeurIPS 2023)

v

Contents

Acknowledgements i

Abstract iii

Publications based on this Thesis v

Contents vi

1 Introduction 1

1.1 A Welfarist Perspective on the MAB Framework 2

1.2 Learning in Causal Bayesian Networks . 3

1.3 Problem Definitions . 5

1.3.1 Stochastic Multi-armed Bandits . 5

1.3.2 Online Learning with Full-feedback . 5

1.3.3 Linear Bandits . 6

1.3.4 Causal Bandits . 6

1.4 Overview of the Thesis . 7

2 Nash Regret Bounds for Stochastic MAB 8

2.1 Results and Techniques . 8

2.1.1 Additional Related Work and Application 9

2.2 Notation and Preliminaries . 10

2.3 The Nash Confidence Bound Algorithm . 11

2.3.1 Regret Analysis . 13

2.3.2 Proof of Theorem 2.1 . 14

2.4 Improved and Anytime Guarantees for Nash Regret 17

2.4.1 Modified Nash Confidence Bound Algorithm 18

2.4.2 Improved Guarantee for Nash Regret . 28

vi

CONTENTS

2.4.3 Anytime Algorithm . 29

2.4.4 Proof of Theorem 2.3 . 31

2.5 Missing Proofs from Section 2.3.1 . 33

2.5.1 Proof of Lemma 2.1 . 33

2.5.2 Proof of Claim 2.1 . 36

2.5.3 Proofs of Lemma 2.2 and 2.3 . 37

2.6 Missing Proofs from Section 2.4.1 . 40

2.6.1 Proof of Lemma 2.5 . 40

2.6.2 Proof of Supporting Lemmas . 41

2.7 Other Formulations of Nash Regret . 42

2.8 Counterexample for the UCB algorithm . 44

2.9 Conclusion and Future Work . 46

3 Nash Regret Bounds for Linear Bandits 47

3.1 Our Contributions and Techniques. 47

3.2 Problem Formulation and Preliminaries . 49

3.2.1 Sub-Poisson Rewards . 50

3.2.2 Optimal Design. 51

3.2.3 John Ellipsoid. 51

3.3 Our Algorithm LinNash and Main Results . 52

3.3.1 Part I: Sampling via John Ellipsoid and Kiefer-Wolfowitz Optimal Design 52

3.3.2 Part II: Phased Elimination via Estimate Dependent Confidence Widths 56

3.3.3 Main Result . 58

3.4 Extension of Algorithm LinNash for Infinite Arms 61

3.5 Experiments . 62

3.6 Proof of Lemmas 3.1 and 3.2 . 64

3.7 Proof of Concentration Bounds . 65

3.8 Regret Analysis of Algorithm 5: Proofs of Lemmas 3.7 and 3.8 68

3.8.1 Supporting Lemmas . 69

3.8.2 Proofs of Lemmas 3.7 and 3.8 . 74

3.9 Regret Analysis of Algorithm 6 . 76

3.10 Conclusion and Future Work . 85

4 Full Feedback with Adversarial Rewards 87

4.1 Prediction with Expert Advice . 88

vii

CONTENTS

4.1.1 Lower Bound . 90

4.2 Online Concave Optimization . 91

5 Learning Good Interventions in Causal Bayesian Networks 95

5.1 Our Contributions . 95

5.2 Additional Related Work . 97

5.3 Notation and Preliminaries . 98

5.4 Finding Near-Optimal Intervention via Covering 100

5.4.1 Regret Analysis . 102

5.4.2 Proof of Theorem 5.1 . 109

5.5 Algorithm for Graphs with Unobserved Variables 110

5.5.1 Regret Analysis for SMBNs . 112

5.5.2 Proof of Theorem 5.2 . 119

5.6 Missing Proof from Section 5.5.1 . 120

5.7 Experiments . 121

5.8 Conclusion and Future Work . 123

Bibliography 124

viii

Chapter 1

Introduction

Multi-armed bandits (MAB) is a mathematical framework for making sequential decisions in the

face of uncertainty. In this framework, we have a set of arms (possible actions) with unknown

means and a time horizon T . For T rounds, the online algorithm sequentially selects an arm

and receives a reward drawn independently from the arm-specific distribution. Here, ex-ante,

the optimal solution would be to select, in every round, the arm with the maximum mean.

However, since the statistical properties of the arms are unknown, the algorithm accrues—

in the T rounds—expected rewards that are not necessarily optimal. The overarching aim

of the framework is to maximize the algorithm’s performance (in some metric of choice) or,

equivalently, minimize regret—which is a notion of loss defined over the bandit instance. As the

algorithm gains more information about the arms, it faces an inherent tradeoff of whether to

explore: pull arms that haven’t been pulled enough times or to exploit: greedily choose the best

arm based on the available information. This tradeoff is fundamental to numerous applications

of MAB, some of which are detailed below

• Medical Trials: The MAB framework was introduced by William R. Thompson [Tho33]

as a means to make medical trials less cruel. The idea was to dynamically allocate

treatments based on the evolving knowledge of drug effectiveness, thus reducing harm.

Since then, there have been numerous studies [VB22, TM17, VBW15, Git79] exploring

the applications of bandit algorithms in medical trials. In particular, when modeled as

a MAB problem, in each round t ∈ {1, . . . , T}, the decision maker administers one of

the candidate drugs to the tth patient. The reward received in each round indicates the

efficacy of the drug administered in that round.

• Applications in Economics: Bandit algorithms have found extensive applications in var-

ious domains in economics, including dynamic pricing [DB15], where the objective is to

1

determine the optimal prices for products based on customer preferences and market dy-

namics. Additionally, bandit algorithms have been explored in the context of auction

design [BS10], where the online algorithm selects reserve prices to maximize revenue.

Furthermore, bandit algorithms have been studied in the design of crowdsourcing plat-

forms [SV14], aiming to dynamically match tasks with workers to maximize the number

of completed tasks.

• Applications to the Web: The MAB framework naturally encompasses several web-based

applications, including online advertisement [SBF17, PACJ07, LZ07], web search [RKJ08],

and recommendation systems [BCS14, LKG16]. In these applications, during each round

t ∈ 1, . . . , T , a user t visits a website, and based on user information and web content,

the algorithm selects an action to maximize revenue or user engagement.

Notably, the bandit algorithm induces value for a population of agents in the mentioned

applications. This perspective encourages studying these algorithms from a welfarist point of

view. In section 1.1, we explore the concept of regret in relation to welfarist considerations

in more depth. Apart from the mentioned applications, recent works have also studied bandit

algorithms for identifying good interventions in causal graphs. We provide a detailed discussion

of this application in section 1.2.

1.1 A Welfarist Perspective on the MAB Framework

Ensuring a fair distribution of resources among agents is a central objective in economics and

social choice theory [Mou04]. A key tool for evaluating the quality of allocations is the use of

welfare functions, which map a set of positive real numbers to a single positive real number. In

economics, several well-studied welfare functions include Egalitarian Welfare (EW), Utilitarian

Welfare (UW), and Nash Social Welfare (NSW). EW assigns the minimum value from the set

of values, UW calculates the arithmetic mean, and NSW computes the geometric mean of the

values.

In the context of bandit problems, the primary metrics used to assess performance are

average regret and simple regret [LS20, S+19]. Average regret compares the optimal mean

reward to the average (arithmetic mean) of the expected rewards obtained by the algorithm over

the rounds. It quantifies the algorithm’s performance as the arithmetic mean of the expected

rewards accumulated throughout the T rounds. On the other hand, simple regret evaluates the

algorithm’s performance based solely on its expected reward in the T th round, disregarding

previous rounds. From a welfarist perspective, average regret corresponds to maximizing Social

Welfare (SW), while simple regret corresponds to maximizing Egalitarian Welfare (EW). It

2

is important to note that maximizing social welfare (or minimizing average regret) does not

necessarily guarantee fairness. Even if the initial agents are treated unfairly, the social welfare

can still be high. In contrast, simple regret captures the fairness guarantees only after excluding

an initial set of agents.

To incorporate fairness and welfare considerations into the Multi-Armed Bandit (MAB)

framework, we adopt a principled approach from mathematical economics. We employ a welfare

function that is justified by axioms to quantify the algorithm’s performance. Specifically, we

utilize the Nash Social Welfare (NSW). NSW satisfies fundamental axioms such as symmetry,

independence of unconcerned agents, scale invariance, and the Pigou-Dalton transfer principle

[Mou04]. The Pigou-Dalton principle ensures that NSW increases under a policy change that

transfers reward δ from an agent with a higher value to an agent with a lower value. This

principle favours a more balanced distribution of rewards, hence, promoting fairness. However, if

the relative increase in value for the lower-valued agent is significantly smaller than the decrease

for the higher-valued agent, NSW would not favor such a transfer, thereby accommodating

efficiency. The NSW strikes a balance between fairness and economic efficiency. It is positioned

between egalitarian and social welfare, as the geometric mean is at least as large as the minimum

reward and at most equal to the arithmetic mean (according to the AM-GM inequality).

In the current framework, each round of the algorithm corresponds to a distinct agent, and

the algorithm’s performance is measured as the geometric mean of its value induced over the

T rounds. This introduces the concept of Nash regret, which captures the difference between

the optimal action choices and the geometric mean of the expected rewards resulting from the

algorithm’s choices. On a meta-level, the notion of Nash regret can be loosely stated as

NRT = OPT−

(
T∏
t=1

rt

) 1
T

where rt denotes the value induced by an algorithm’s decision in round t. In section 1.3, we

provide more precise definitions of Nash regret pertaining different problems in online learning.

In the next section, we introduce an important application of the MAB framework within

the domain of Causal Inference, namely the causal bandit problem.

1.2 Learning in Causal Bayesian Networks

Statistical inference involves understanding the characteristics of a high dimensional-distribution

using observational data. Although probability distributions can effectively capture the rela-

tionships between these variables, they may fall short in providing accurate predictions when

3

the outcomes result from interventions on specific variable, that is, when certain variables are

set to specific values through an external intervention. Causal Bayesian Networks (CBNs) have

emerged as a prominent paradigm for modeling such problems [Pea09]. Their recent applica-

tions span diverse domains such as language modeling [Sev20], medicine [KEG17, CKD+15,

LWB+18], robotics [YN12], and computational advertising [BPQC+13].

A Causal Bayesian Network (CBN) consists of a directed acyclic graph, known as a causal

graph, indicating the direction of causation among random variables, with each vertex in the

graph denoting a random variable. In this graph, the set of directed edges represents the causal

relationships between these variables, and each variable (vertex) in the graph is determined by a

function of its parent vertices. Additionally, a variable without parents, known as an exogenous

variable, is an independent random variable following some distribution.

Despite the longstanding research focus on CBNs, studying online learning in the context

of CBNs has only recently gained attention. The causal bandits model addresses fundamental

questions at the intersection of online learning and CBNs. Introduced by Lattimore et al.

[LLR16], causal bandits combine concepts from CBNs and multi-armed bandits (MABs) to

establish a framework for learning good interventions in CBNs. The problem is defined by a

causal graph, a set of interventions, and a designated reward node within the causal graph.

Amongst the given set of interventions, the one that maximizes the expected value of the

reward node is labeled as the best intervention. The online learning algorithm aims to use as

few interventional and observational samples as possible to determine the best intervention.

We now present a stylized application of the causal bandit problem, similar to the one

outlined in [MNS22]. Consider a scenario where a policy-maker is tasked with determining

the most effective set of precautionary measures to mitigate the spread of a disease. The set

of options available to the policy maker such as policing for social distancing, opening new

vaccination centers, mandating the wearing of face masks, creating new remote-work policies,

etc., are typically large, and the policymaker can choose multiple policies to implement as long

as they fit the budget/time constraints. The task at hand is to find the policy most effective

in mitigating the spread of the disease. Importantly, leveraging the domain expertise of health

professionals, the policymaker can access an underlying causal graph. This graph represents

causal relationships and helps to make informed decisions on when and if to enforce a specific

measure. Each feasible combination of policies corresponds to an intervention in the causal

graph, and the total number of possible choices can be exponential. When studied as a causal

bandit problem, the decision maker gets to exploit the causal structure to identify the best

intervention with fewer data samples.

4

1.3 Problem Definitions

1.3.1 Stochastic Multi-armed Bandits

In the classical (stochastic) multi-armed bandit problem, an online algorithm (decision maker)

has access to samples from k (unknown) distributions that are defined on the interval [0, 1].

These distributions are referred to as arms, denoted by i ∈ 1, . . . , k. The algorithm must

repeatedly select (pull) an arm in each round, and this process continues for a total of T ≥ 1

rounds. Each pull of arm i results in an independent and identically distributed (i.i.d.) reward

from the ith distribution. Let µi ∈ [0, 1] denote the unknown mean of the ith arm, and we

define µ∗ as the maximum mean, i.e., µ∗ := maxi∈[k] µi. Given a specific bandit instance and

an algorithm, the random variable It ∈ [k] denotes the arm pulled in round t ∈ 1, . . . , T .

Importantly, It depends on the observations made prior to round t.

We consider settings where rewards are distributed among a population of T agents. Specifi-

cally, for each agent t ∈ 1, . . . , T , the expected reward received is E[rt]. Therefore, the algorithm
induces rewards {E[µIt]}

T
t=1 for all T agents. The algorithm’s performance can be quantified by

applying a welfare function to these induced rewards. We focus on Nash social welfare, which,

in the context of stochastic Multi-armed Bandits, corresponds to the geometric mean of the

agents’ expected rewards:
(∏T

t=1 E[µIt]
)1/T

. The objective is to obtain guarantees on Nash

regret which is defined as the difference between the optimal arm µ∗ and the NSW of expected

rewards. That is,

NRT := µ∗ −

(
T∏
t=1

E[µIt]

)1/T

.

1.3.2 Online Learning with Full-feedback

The problem is defined over a set of actions X ⊂ Rd represented as d-dimensional vectors, along

with a sequence of concave reward functions f1, f2, . . . , fT . Each function ft : X→ R+ denotes

the reward associated with the t-th round. In each round, the algorithm selects an action xt ∈ X

and receives a reward rt = ft(xt). The algorithm’s performance is evaluated based on the Nash

Social Welfare (NSW) across the rounds, and the Nash regret is defined with respect to the

best fixed action in hindsight:

NRT = max
x∈X

(
T∏
t=1

ft(x)

) 1
T

−

(
T∏
t=1

ft(xt)

) 1
T

(1.1)

5

1.3.3 Linear Bandits

The stochastic linear bandit problem involves an online algorithm making sequential decisions

over a time horizon of T rounds. The algorithm is provided with a set of arms X ⊂ Rd, where

each arm represents a d-dimensional vector. Each arm x ∈ X is associated with a stochastic

reward rx ∈ R+. The key assumption in this problem is that the expected reward rx is a

linear function of the arm x ∈ Rd, represented by an unknown parameter vector θ∗ ∈ Rd. The

expected value of the reward for arm x ∈ X is given by E[rx] = ⟨x, θ∗⟩.
The online algorithm, which can be randomized, proceeds by selecting an arm Xt in each

round t ∈ [T] and observing the corresponding stochastic reward rXt > 0. Similar to the

stochastic MAB problem the objective is to quantify the welfare induced by the algorithm in

terms of the Nash Regret, defined as

NRT := max
x∈X
⟨x, θ∗⟩ −

(
T∏
t=1

E[⟨Xt, θ
∗⟩]

)1/T

.

1.3.4 Causal Bandits

A causal bandit problem revolves around a causal Bayesian network (CBN) that consists of

a directed acyclic graph G = (V, E), representing the causal relationships among N random

variables. In this graph, the vertices V represent the variables, and the set of directed edges E

represents the causal relationships between these variables. Each variable is a function of its

parents in the graph.

We consider the random variables in V to be Bernoulli variables. In the causal bandit

problem, one variable VN ∈ V is designated as the reward variable, and the objective is to

optimize the expected value of this reward variable. The optimization is performed over a

predefined set A consisting of interventions in the causal graph. These interventions, denoted as

do() operations, fix the values of certain variables without considering their parents. Specifically,

in an intervention A = do(S = s), the value of each variable i in the set S ⊆ V is fixed according

to the corresponding binary assignment s ∈ 0, 1|S|. Under this intervention, the unaffected

variables (in V \ S) follow the remaining causal relations. We denote the expected value of the

reward variable under intervention A as µ(A).

The objective here is to perform exploratory interventions over a given number of rounds T

(time horizon). At the end of this time horizon, the learner aims to identify a nearly optimal

intervention from the target set A. In other words, the main goal of the causal bandit problem

is to find an intervention AT ∈ A at the end of T rounds that maximizes the expected value

6

of the reward variable VN . The performance of the algorithm is measured in terms of simple

regret, which is defined as

RT = max
A∈A

µ(A)− E [µ(AT)] .

1.4 Overview of the Thesis

This thesis focuses on investigating the aforementioned problems, with each chapter dedicated

to studying a specific problem. The contributions of each chapter are outlined below:

• Chapter 2 addresses the problem of Nash regret in stochastic multi-armed bandits. We

introduce a novel algorithm that achieves near-optimal Nash regret, with only logarithmic

factors of deviation. Additionally, we extend this algorithm to a variant that does not

require prior knowledge of the time horizon.

• Chapter 3 delves into the problem of Nash regret in linear bandits with sub-Poisson

rewards. We propose two algorithms: one that is dependent on the arm set, and another

that is independent of the size of the arm set.

• Chapter 4 investigates the scenario of full feedback with adversarial rewards. Specifi-

cally, we examine the expert’s problem and online concave optimization. In addition, we

establish a tight lower bound up to logarithmic factors.

• Chapter 5 explores the causal bandit problem and presents an algorithm for identifying

optimal interventions in a causal graph. Our algorithm surpasses existing state-of-the-art

approaches by introducing an exploration model that allows the algorithm to intervene

beyond the given set of arms. Additionally, we extend the algorithm to provide sim-

ple regret guarantees for causal graphs with unobserved variables, a previously unsolved

problem in the most general case of causal graphs.

7

Chapter 2

Nash Regret Bounds for Stochastic

MAB

We extend the notion of regret with a welfarist perspective. Focussing on the classic multi-

armed bandit (MAB) framework, this chapter quantifies the performance of bandit algorithms

by applying a fundamental welfare function, namely the Nash social welfare (NSW) function.

This corresponds to equating algorithm’s performance to the geometric mean of its expected

rewards and leads us to the study of Nash regret, defined as the difference between the—a priori

unknown—optimal mean (among the arms) and the algorithm’s performance.

Recall that the MAB framework provides an encapsulating abstraction for settings that en-

tail sequential decision making under uncertainty. In this framework, a decision maker (online

algorithm) has sample access to k distributions (arms), which are a priori unknown. For T

rounds, the online algorithm sequentially selects an arm and receives a reward drawn indepen-

dently from the arm-specific distribution. Here, ex ante, the optimal solution would be to select,

in every round, the arm with the maximum mean. However, since the statistical properties of

the arms are unknown, the algorithm accrues—in the T rounds—expected rewards that are

not necessarily the optimal. The construct of regret captures this sub-optimality and, hence,

serves as a key performance metric for algorithms. A bit more formally, regret is defined as the

difference between the optimal mean (among the arms) and the algorithm’s performance.

2.1 Results and Techniques

We develop an algorithm that achieves Nash regret of O

(√
k log T

T

)
; here, k denotes the number

of arms in the bandit instance and T is the given horizon of play (Theorem 2.1 and Theorem

8

2.2). Note that, for any algorithm, the Nash regret is at least as much as its average regret.1

Therefore, the known Ω
(√

k
T

)
lower bound on average regret [ACBFS02] holds for Nash regret

as well. This observation implies that, up to a log factor, our guarantee matches the best-

possible bound, even for average regret.

We also show that the standard upper confidence bound (UCB) algorithm [LS20] does not

achieve any meaningful guarantee for Nash regret (Section 2.8). This barrier further highlights

that Nash regret is a more challenging benchmark than average regret. In fact, it is not obvious

if one can obtain any nontrivial guarantee for Nash regret by directly invoking upper bounds

known for average (cumulative) regret. For instance, a reduction from Nash regret minimization

to average regret minimization, by taking logs of the rewards (i.e., by converting the geometric

mean to the arithmetic mean of logarithms), faces the following hurdles: (i) for rewards that

are bounded between 0 and 1, the log values can be in an arbitrarily large range, and (ii) an

additive bound for the logarithms translates back to only a multiplicative guarantee for the

underlying rewards.

Our algorithm (Algorithm 1) builds upon the UCB template with interesting technical

insights; see Section 2.3 for a detailed description. The two distinctive features of the algorithm

are: (i) it performs uniform exploration for a judiciously chosen number of initial rounds and

then (ii) it adds a novel (arm-specific) confidence width term to each arm’s empirical mean and

selects an arm for which this sum is maximum (see equation (2.2)). Notably, the confidence

width includes the empirical mean as well. These modifications enable us to go beyond standard

regret analysis.2

The above-mentioned algorithmic result focusses on settings in which the horizon of play

(i.e., the number of rounds) T is given as input. Extending this result, we also establish a Nash

regret guarantee for T -oblivious settings. In particular, we develop an anytime algorithm with

a Nash regret of O

(√
k log T

T
log T

)
(Theorem 2.3). This extension entails an interesting use of

empirical estimates to identify an appropriate round at which the algorithm can switch out of

uniform exploration.

2.1.1 Additional Related Work and Application

Given that learning algorithms are increasingly being used to guide socially sensitive decisions,

there has been a surge of research aimed at achieving fairness in MAB contexts; see, e.g.,

1This follows from the AM-GM inequality: The average regret is equal to the difference between the optimal
mean, µ∗, and the arithmetic mean of expected rewards. The arithmetic mean is at least the geometric mean,
which in turn is considered in Nash regret.

2Note that the regret decomposition lemma [LS20], a mainstay of regret analysis, is not directly applicable
for Nash regret.

9

[JKMR16a, CKSV19, PGNN20, BBLB20a] and references therein. This thread of research

has predominantly focused on achieving fairness for the arms. By contrast, the current work

establishes fairness (and welfare) guarantees across time.

In addition, [HMS21a] considers a multi-agent setting: each arm pull generates a (possibly

distinct) reward among N agents. The goal in [HMS21a] is to find a distribution (over the

arms) that is fair for the N agents. This objective differs from identifying an arm with a high

mean reward, since, for each arm, the rewards can vary across the agents. On the other hand,

our work conforms to the classic MAB setup and considers fairness across rounds; each round

t ∈ [T] represents a distinct agent.

The significance of Nash social welfare and its axiomatic foundations [KN79, NJ50] in fair

division settings are well established; see [Mou04] for a textbook treatment. Specifically in the

context of allocating divisible goods, NSW is known to uphold other important fairness and

efficiency criteria [Var74]. In fact, NSW corresponds to the objective function considered in

the well-studied convex program of Eisenberg and Gale [EG59]. NSW is an object of active

investigation in discrete fair division literature as well; see, e.g., [CKM+19].

While the focus of the current chapter is to develop provable algorithmic guarantees for

Nash regret, we provide here an example to highlight the applicability of this fairness metric:

Consider the use of MAB methods for displaying ad impressions [SBF17]. In this application,

different ad configurations correspond to different arms, and the online users are the T agents.

In round t ∈ [T], the tth user visits the website and is shown an ad configuration (i.e., a chosen

arm). The reward, for every user t ∈ [T], is stochastic and based on the selected arm (i.e.,

the selected ad configuration). In this application, maximizing Nash welfare of rewards is a

meaningful objective, since it qualitatively supports an online algorithm that is fair across the

T agents. Indeed, Nash regret would dissuade sacrificing the experience of an initial set of users

for overall utilitarian benefits.

2.2 Notation and Preliminaries

We study the classic (stochastic) multi-armed bandit problem. Here, an online algorithm

(decision maker) has sample access to k (unknown) distributions, that are supported on [0, 1].

The distributions are referred to as arms i ∈ {1, . . . , k}. The algorithm must iteratively select

(pull) an arm per round and this process continues for T ≥ 1 rounds overall. Successive pulls

of an arm i yield i.i.d. rewards from the ith distribution. We will, throughout, write µi ∈ [0, 1]

to denote the (a priori unknown) mean of the the ith arm and let µ∗ be maximum mean,

µ∗ := maxi∈[k] µi. Furthermore, given a bandit instance and an algorithm, the random variable

It ∈ [k] denotes the arm pulled in round t ∈ {1, . . . , T}. Note that It depends on the draws

10

observed before round t.

We address settings in which the rewards are distributed across a population of T agents.

Specifically, for each agent t ∈ {1, . . . , T}, the expected reward received is E[µIt] and, hence,

the algorithm induces rewards {E[µIt]}
T
t=1 across all the T agents. Notably, one can quantify

the algorithm’s performance by applying a welfare function on these induced rewards. Our

focus is on Nash social welfare, which, in the current context, is equal to the geometric mean of

the agents’ expected rewards:
(∏T

t=1 E[µIt]
)1/T

. Here, the overarching aim of achieving a Nash

social welfare as high as possible is quantitatively captured by considering Nash regret, NRT ;

this metric is defined as

NRT := µ∗ −

(
T∏
t=1

E[µIt]

)1/T

(2.1)

Note that the optimal value of Nash social welfare is µ∗, and our objective is to minimize Nash

regret.

Furthermore, the standard notion of average (cumulative) regret is obtained by assessing

the algorithm’s performance as the induced social welfare 1
T

∑T
t=1 E[µIt]. Specifically, we write

RT to denote the average regret, RT := µ∗ − 1
T

∑T
t=1 E[µIt]. The AM-GM inequality implies

that Nash regret, NRT , is a more challenging benchmark than RT ; indeed, for our algorithm,

the Nash regret is O

(√
k log T

T

)
and the same guarantee holds for the algorithm’s average regret

as well.

2.3 The Nash Confidence Bound Algorithm

Our algorithm (Algorithm 1) consists of two phases. Phase I performs uniform exploration for

T̃ := 16
√

kT log T
log k

rounds. In Phase II, each arm is assigned a value (see equation (2.2)) and

the algorithm pulls the arm with the highest current value. Based on the observed reward, the

values are updated and this phase continues for all the remaining rounds.

We refer to the arm-specific values as the Nash confidence bounds, NCBi-s. For each arm

i ∈ [k], we obtain NCBi by adding a ‘confidence width’ to the empirical mean of arm i; in

particular, NCBi depends on the number of times arm i has been sampled so far and rewards

experienced for i. Formally, for any round t and arm i ∈ [k], let ni ≥ 1 denote the number of

times arm i has been pulled before this round.1 Also, for each 1 ≤ s ≤ ni, random variable Xi,s

be the observed reward when arm i is pulled the sth time. At this point, arm i has empirical

1Note that ni is a random variable.

11

mean µ̂i :=
1
ni

∑ni

s=1Xi,s and we define the Nash confidence bound as

NCBi := µ̂i + 4

√
µ̂i log T

ni

(2.2)

It is relevant to observe that, in contrast to standard UCB (see, e.g., [LS20]), here the

confidence width includes the empirical mean (i.e., the additive term has µ̂i under the square-

root). This is an important modification that enables us to go beyond standard regret analysis.

Furthermore, we note that the Nash regret guarantee of Algorithm 1 can be improved by a

factor of
√
log k (see Theorem 2.1 and Theorem 2.2). The initial focus on Algorithm 1 enables

us to highlight the key technical insights for Nash regret. The improved guarantee is detailed

in Section 2.4.1.

Algorithm 1 Nash Confidence Bound Algorithm

Input: Number of arms k and horizon of play T .

1: Initialize empirical means µ̂i = 0 and counts ni = 0 for all arms i ∈ [k]. Also, set T̃ :=

16
√

kT log T
log k

.

Phase I
2: for t = 1 to T̃ do
3: Select It uniformly at random from {1, 2, . . . , k}.
4: Pull arm It and observe reward Xt.
5: For arm It, increment the count nIt (by one) and update the empirical mean µ̂It .
6: end for

Phase II
7: for t = (T̃ + 1) to T do
8: Pull the arm It with the highest Nash confidence bound, i.e., It = argmaxi∈[k] NCBi.
9: Observe reward Xt and update µ̂It .
10: Update the Nash confidence bound for It (see equation (2.2)).
11: end for

The following theorem is the main result of this section and it establishes that Algorithm 1

achieves a tight—up to log factors—guarantee for Nash regret.

Theorem 2.1. For any bandit instance with k arms and given any (moderately large) time

horizon T , the Nash regret of Algorithm 1 satisfies

NRT = O

(√
k log k log T

T

)
.

12

2.3.1 Regret Analysis

We first define a “good” event G and show that it holds with high probability (Lemma 2.1);

our Nash regret analysis is based on conditioning on G. In particular, we will first define three

sub-events G1, G2, G3 and set G := G1 ∩ G2 ∩ G3. For specifying these events, write µ̂i,s to

denote the empirical mean of arm i’s rewards, based on the first s samples (of i).

G1: Every arm i ∈ [k] is sampled at least T̃
2k

times in Phase I,1 i.e., for each arm i we have

ni ≥ T̃
2k

at the end of the first phase in Algorithm 1.

G2: For all arms i ∈ [k], with µi >
6
√
k log k log T√

T
, and all sample counts T̃

2k
≤ s ≤ T we have

|µi − µ̂i,s| ≤ 3
√

µi log T
s

.

G3: For all arms j ∈ [k], with µj ≤ 6
√
k log k log T√

T
, and all T̃

2k
≤ s ≤ T , we have µ̂j,s ≤ 9

√
k log k log T√

T
.

Here,2 all the events are expressed as in the canonical bandit model (see, e.g., [LS20, Chapter

4]). In particular, for events G2 and G3, one considers a k × T reward table that populates T

independent samples for each arm i ∈ [k]. All the empirical means are obtained by considering

the relevant entries from the table; see section 2.7 for a more detailed description of the associ-

ated probability space. Also note that, conceptually, the algorithm gets to see the (i, s)th entry

in the table only when it samples arm i the sth time.

The lemma below lower bounds the probability of event G; its proof is deferred to section

2.5.1.

Lemma 2.1. P {G} ≥
(
1− 4

T

)
.

Next, we state a useful numeric inequality; for completeness, we provide its proof in section

2.5.2.

Claim 2.1. For all reals x ∈
[
0, 1

2

]
and all a ∈ [0, 1], we have (1− x)a ≥ 1− 2ax.

Now, we will show that the following key guarantees (events) hold under the good event G:

• Lemma 2.2: The Nash confidence bound of the optimal arm i∗ is at least its true mean, µ∗,

throughout Phase II.

1Recall that T̃ := 16
√

kT log T
log k .

2Note that if, for all arms i ∈ [k], the means µi ≤ 6
√
k log k log T√

T
, then, by convention, P{G2} = 1. Similarly,

if all the means are sufficiently large, then P{G3} = 1.

13

• Lemma 2.3: Arms j with sufficiently small means (in particular, µj ≤ 6
√
k log k log T√

T
) are never

pulled in Phase II.

• Lemma 2.4: Arms i that are pulled many times in Phase II have means µi close to the

optimal µ∗. Hence, such arms i do not significantly increase the Nash regret.

The proofs of these three lemmas are deferred to Section 2.5.3. In these results, we will address

bandit instances wherein the optimal mean µ∗ ≥ 32
√
k log k log T√

T
. Note that in the complementary

case (wherein µ∗ < 32
√
k log k log T√

T
) the Nash regret directly satisfies the bound stated in Theorem

2.1.

Lemma 2.2. Let NCBi∗,t be the Nash confidence bound of the optimal arm i∗ at round t.

Assume that the good event G holds and also µ∗ ≥ 32
√
k log k log T√

T
. Then, for all rounds t > T̃

(i.e., for all rounds in Phase II), we have NCBi∗,t ≥ µ∗.

Lemma 2.3. Consider a bandit instance with optimal mean µ∗ ≥ 32
√
k log k log T√

T
and assume that

the good event G holds. Then, any arm j, with mean µj ≤ 6
√
k log k log T√

T
, is never pulled in all of

Phase II.

Lemma 2.4. Consider a bandit instance with optimal mean µ∗ ≥ 32
√
k log k log T√

T
and assume that

the good event G holds. Then, for any arm i that is pulled at least once in Phase II we have

µi ≥ µ∗ − 8

√
µ∗ log T

Ti − 1
,

where Ti is the total number of times that arm i is pulled in the algorithm.

2.3.2 Proof of Theorem 2.1

For bandit instances in which the optimal mean µ∗ ≤ 32
√
k log k log T√

T
, the theorem holds directly;

specifically, the Nash regret NRT = µ∗ −
(∏T

t=1 E[µIt]
)1/T

≤ µ∗. Therefore, in the remainder

of the proof we will address instances wherein µ∗ ≥ 32
√
k log k log T√

T
.

The Nash social welfare of the algorithm satisfies1
(∏T

t=1 E [µIt]
) 1

T
=
(∏T̃

t=1 E [µIt]
) 1

T
(∏T

t=T̃+1 E [µIt]
) 1

T
.

In this product, the two terms account for the rewards accrued in the two phases, respectively.

Next, we will lower bound these two terms.

1Recall that T̃ := 16
√

kT log T
log k .

14

Phase I: In each round of the first phase, the algorithm selects an arm uniformly at random.

Hence, E[µIt] ≥ µ∗

k
, for each round t ≤ T̃ . Therefore, for Phase I we have

 T̃∏
t=1

E[µIt]

 1
T

≥
(
µ∗

k

) T̃
T

= (µ∗)
T̃
T

(
1

k

) 16
√
k log T√

T log k

= (µ∗)
T̃
T

(
1

2

) 16
√
k log T log k√
T log k

= (µ∗)
T̃
T

(
1− 1

2

) 16
√
k log k log T√

T

≥ (µ∗)
T̃
T

(
1− 16

√
k log k log T√

T

)
(2.3)

To obtain the last inequality we note that the exponent 16
√
k log k log T√

T
< 1 (for appropriately

large T) and, hence, the inequality follows from Claim 2.1.

Phase II: For the second phase, the product of the expected rewards can be bounded as follows

 T∏
t=T̃+1

E [µIt]

 1
T

≥ E


 T∏

t=T̃+1

µIt

 1
T

 ≥ E


 T∏

t=T̃+1

µIt

 1
T

∣∣∣∣∣∣∣ G
P{G} (2.4)

Here, the first inequality follows from the multivariate Jensen’s inequality and the second one

is obtained by conditioning on the good event G. To bound the expected value in the right-

hand-side of inequality (2.4), we consider the arms that are pulled at least once in Phase II. In

particular, with reindexing, let {1, 2, . . . , ℓ} denote the set of all arms that are pulled at least

once in the second phase. Also, let mi ≥ 1 denote the number of times arm i ∈ [ℓ] is pulled

in Phase II and note that
∑ℓ

i=1 mi = T − T̃ . Furthermore, let Ti denote the total number of

times any arm i is pulled in the algorithm. Indeed, (Ti−mi) is the number of times arm i ∈ [ℓ]

is pulled in Phase I. With this notation, the expected value in the right-hand-side of inequality

(2.4) can be expressed as E
[(∏T

t=T̃ µIt

) 1
T

∣∣∣∣ G] = E
[(∏ℓ

i=1 µ
mi
T
i

) ∣∣∣ G]. Moreover, since we

are conditioning on the good event G, Lemma 2.4 applies to each arm i ∈ [ℓ]. Hence,

E


 T∏

t=T̃

µIt

 1
T

∣∣∣∣∣∣∣ G
 = E

[(
ℓ∏

i=1

µ
mi
T
i

) ∣∣∣∣∣ G
]
≥ E

 ℓ∏
i=1

(
µ∗ − 8

√
µ∗ log T

Ti − 1

)mi
T

∣∣∣∣∣∣ G


(Lemma 2.4)

= (µ∗)1−
T̃
T E

 ℓ∏
i=1

(
1− 8

√
log T

µ∗(Ti − 1)

)mi
T

∣∣∣∣∣∣ G
 (2.5)

15

For the last equality, we use
∑ℓ

i=1mi = T − T̃ . Now, recall that, under event G, each arm

is pulled at least T̃
2k

= 8
k

√
kT log T
log k

times in Phase I. Hence, Ti > T̃
2k

for each arm i ∈ [ℓ].

Furthermore, since µ∗ ≥ 32
√
k log k log T√

T
, we have 8

√
log T

µ∗(Ti−1)
≤ 8

√
1

256
= 1

2
for each i ∈ [ℓ].

Therefore, we can apply Claim 2.1 to reduce the expected value in inequality (2.5) as follows

E

 ℓ∏
i=1

(
1− 8

√
log T

µ∗(Ti − 1)

)mi
T

∣∣∣∣∣∣ G
 ≥ E

[
ℓ∏

i=1

(
1− 16mi

T

√
log T

µ∗(Ti − 1)

) ∣∣∣∣∣ G
]

≥ E

[
ℓ∏

i=1

(
1− 16

T

√
mi log T

µ∗

) ∣∣∣∣∣ G
]

(since Ti ≥ mi + 1)

We can further simplify the above inequality by noting that (1− x)(1− y) ≥ 1− x− y, for all

x, y ≥ 0.

E

[
ℓ∏

i=1

(
1− 16

T

√
mi log T

µ∗

) ∣∣∣∣∣ G
]
≥ E

[
1−

ℓ∑
i=1

(
16

T

√
mi log T

µ∗

) ∣∣∣∣∣ G
]

= 1−

(
16

T

√
log T

µ∗

)
E

[
ℓ∑

i=1

√
mi

∣∣∣∣∣ G
]

≥ 1−

(
16

T

√
log T

µ∗

)
E

√ℓ
√√√√ ℓ∑

i=1

mi

∣∣∣∣∣∣ G


(Cauchy-Schwarz inequality)

≥ 1−

(
16

T

√
log T

µ∗

)
E
[√

ℓ T
∣∣∣ G] (since

∑
imi ≤ T)

= 1−

(
16

√
log T

µ∗T

)
E
[√

ℓ
∣∣∣ G]

≥ 1−

(
16

√
k log T

µ∗T

)
(2.6)

Here, the final inequality holds since ℓ ≤ k. Using (2.6), along with inequalities (2.4), and

(2.5), we obtain for Phase II:

 T∏
t=T̃+1

E [µIt]

 1
T

≥ (µ∗)1−
T̃
T

(
1− 16

√
k log T

µ∗T

)
P{G} (2.7)

16

Inequalities (2.7) and (2.3) provide relevant bounds for Phase II and Phase I, respectively.

Hence, for the Nash social welfare of the algorithm we have

(
T∏
t=1

E [µIt]

) 1
T

≥ µ∗
(
1− 16

√
k log k log T√

T

)(
1− 16

√
k log T

µ∗T

)
P{G}

≥ µ∗
(
1− 16

√
k log k log T√

T

)(
1− 16

√
k log T

µ∗T

)(
1− 4

T

)
(via Lemma 2.1)

≥ µ∗
(
1− 32

√
k log k log T√

µ∗T

)(
1− 4

T

)
≥ µ∗ − 32

√
µ∗k log k log T√

T
− 4µ∗

T

≥ µ∗ − 32
√
k log k log T√

T
− 4

T
(since µ∗ ≤ 1)

Therefore, the Nash regret of the algorithm satisfies NRT = µ∗ −
(∏T

t=1 E [µIt]
) 1

T ≤

32
√
k log k log T√

T
+ 4

T
. Overall, we get that NRT = O

(√
k log k log T

T

)
. The theorem stands proved.

Remark 1. Algorithm 1 is different from standard UCB, in terms of both design and anal-

ysis. For instance, here the empirical means appear in the confidence width and impact the

concentration bounds utilized in the analysis.

Remark 2. As mentioned previously, the Nash regret guarantee obtained in Theorem 2.1 can

be improved by a factor of
√
log k. To highlight the key technical insights, in Algorithm 1 we

fixed the number of rounds in Phase I (to T̃). However, with an adaptive approach, one can

obtain a Nash regret of O

(√
k log T

T

)
, as stated in Theorem 2.2 (Section 2.4.2). A description

of the modified algorithm (Algorithm 2) and the proof of Theorem 2.2 appear in Section 2.4.1.

2.4 Improved and Anytime Guarantees for Nash Regret

This section provides an improved (over Theorem 2.1) Nash regret guarantee for settings in

which the horizon of play T is known in advance. Furthermore, here we also develop a Nash

regret minimization algorithm for settings in which the horizon of play T is not known in

advance. This anytime algorithm (Algorithm 3 in Section 2.4.3) builds upon the standard

doubling trick. The algorithm starts with a guess for the time horizon, i.e., a window of length

W ∈ Z+. Then, for W rounds it either (i) performs uniform exploration, with probability 1
W 2 ,

or (ii) invokes Algorithm 2 as a subroutine (with the remaining probability
(
1− 1

W 2

)
). This

17

execution for W rounds completes one epoch of Algorithm 3. In the subsequent epochs, the

algorithm doubles the window length and repeats the same procedure till the end of the time

horizon, i.e., till a stop signal is received.

In Section 2.4.1, we detail Algorithm 2, which is called as a subroutine in our anytime

algorithm and it takes as input a (guess) window lengthW . We will also prove that if Algorithm

2 is in fact executed with the actual horizon of play (i.e., executed withW = T), then it achieves

a Nash regret of O

(√
k log T

T

)
(Theorem 2.2); this provides the improvement mentioned above.

2.4.1 Modified Nash Confidence Bound Algorithm

Algorithm 2 consists of two phases:

• In Phase 1, the algorithm performs uniform exploration until the sum of rewards for any arm

i exceeds a certain threshold.1 Specifically, with ni denoting the number of times an arm i

has been pulled so far and Xi,s denoting the reward observed for arm i when it is pulled the

sth time, the exploration continues as long as maxi
∑ni

s=1Xi,s ≤ 420c2 logW ; here c is an

absolute constant. Note that this stopping criterion is equivalent to ni µ̂i ≤ 420c2 logW ,

where µ̂i is the empirical mean for arm i.

• In Phase 2, the algorithm associates with each arm i the following Nash confined bound

value, NCBi, and selects the arm for which that value is the maximized.2

NCBi := µ̂i + 2c

√
2µ̂i logW

ni

(2.8)

Recall that Algorithm 2 is called as a subroutine by our anytime algorithm (Algorithm 3)

with a time window (guess) W as input. For the purposes of analysis (see Section 2.4.3 for

details), it suffices to obtain guarantees for Algorithm 2 when W is at least
√
T . Hence, this

section analyzes the algorithm with the assumption3 that
√
T ≤ W ≤ T .

We first define a “good” event E and show that it holds with high probability; our analysis

is based on conditioning on E. In particular, we will first define three sub-events E1, E2, E3

and set E := E1 ∩E2 ∩E3. For specifying these events, write µ̂i,s to denote the empirical mean

1Note that this is in contrast to Algorithm 1, in which uniform exploration was performed for a fixed number
of rounds.

2NCBi differs from NCBi (see equation (2.2)) in terms of constants. Specifically, the parameter c is an
absolute constant and is fixed in the algorithm.

3We will also assume that the optimal mean µ∗ is sufficiently greater than 1√
T
. In the complementary case,

the stated Nash regret bound follows directly.

18

Algorithm 2 Modified NCB

Input: Number of arms k and time window W .

1: Initialize empirical means µ̂i = 0 and counts ni = 0 for all i ∈ [k].
2: Initialize round index t = 1 and set parameter c = 3.

Phase 1
3: while maxi ni µ̂i ≤ 420c2 logW and t ≤ W do
4: Select It uniformly at random from [k]. Pull arm It and observe reward Xt.
5: For arm It, increment the count nIt (by one) and update the empirical mean µ̂It .
6: Update t← t+ 1.
7: end while

Phase 2
8: while t ≤ W do
9: Pull the arm It with the highest Nash confidence bound, i.e., It = argmaxi∈[k] NCBi.
10: Observe reward Xt and update the Nash confidence bound for It (see equation (2.8)).
11: Update t← t+ 1.
12: end while

of arm i’s rewards, based on the first s samples (of i). Also, define

S :=
c2 log T

µ∗ (2.9)

E1: For any number of rounds r ≥ 128kS and any arm i ∈ [k], during the first r rounds of

uniform sampling, arm i is sampled at least r
2k

times and at most 3r
2k

times.

E2: For all arms i ∈ [k], with µi >
µ∗

64
, and all sample counts 64S ≤ s ≤ T we have |µi − µ̂i,s| ≤

c
√

µi log T
s

.

E3: For all arms j ∈ [k], with µj ≤ µ∗

64
, and all sample counts 64S ≤ s ≤ T , we have µ̂j,s <

µ∗

32
.

Note that these events address a single execution of Algorithm 2 and are expressed in the

canonical bandit model [LS20]. Furthermore, they are expressed using the overall horizon of

play T . This, in particular, ensures that, irrespective of W , they are well specified.

We first obtain a probability bound for the event E; the proof of the following lemma is

deferred to section 2.6.1.

Lemma 2.5. P {E} ≥ 1− 4
T
.

The next lemma shows that, under event E, the total observed reward for any arm is low

until certain number of samples. In the final analysis, this result will enable us to bound (under

event E) the number of rounds in Phase 1 of Algorithm 2. The proofs of Lemmas 2.6, 2.7, and

2.8 appear in section 2.6.2.

19

Lemma 2.6. Under the event E, for any arm i and any sample count n ≤ 192S, we have

n µ̂i,n < 210c2 log T .

Recall that i∗ denotes the optimal arm, i.e., i∗ = argmaxi∈[k] µi. The following lemma shows

that, under event E and after certain number of samples, the total observed reward for i∗ is

sufficiently large.

Lemma 2.7. Under the event E, for any sample count n ≥ 484S, we have n µ̂i∗,n ≥ 462c2 log T .

The lemma below will help us in analyzing the termination of the first while-loop (Line 3)

of Algorithm 2. Also, recall that in this section we analyze Algorithm 2 with the assumption

that
√
T ≤ W ≤ T .

Lemma 2.8. Assume that
√
T ≤ W ≤ T . Also, let random variable τ denote the num-

ber of rounds of uniform sampling at which the sum of observed rewards for any arm exceeds

420c2 logW (i.e., only after τ rounds of uniform sampling we have maxi niµ̂i > 420c2 logW).

Then, under event E, the following bounds hold

128 kS ≤ τ ≤ 968 kS.

As mentioned previously, the events E1, E2, and E3 are defined under the canonical bandit

model. Hence, Lemmas 2.6, 2.7, and 2.8 also conform to this setup.

Next, we will show that the following key guarantees (events) hold under the good event E:

• Lemma 2.9: The Nash confidence bound of the optimal arm i∗ is at least its true mean, µ∗,

throughout Phase 2 of Algorithm 2.

• Lemma 2.10: Arms j with sufficiently small means (in particular, µj ≤ µ∗

64
) are never pulled

in Phase 2.

• Lemma 2.11: Arms i that are pulled many times in Phase 2 have means µi close to the

optimal µ∗. Hence, such arms i do not significantly increase the Nash regret.

Lemma 2.9. Let NCBi∗,t be the Nash confidence bound of the optimal arm i∗ at any round t in

Phase 2. Assume that the good event E holds and
√
T ≤ W ≤ T . Then, we have NCBi∗,t ≥ µ∗.

Proof. Fix any round t in Phase 2 and write ni∗ to denote the number of times the optimal arm

i∗ has been pulled before that round. Also, let µ̂∗ denote the empirical mean of arm i∗ at round

t. Hence, by definition, at this round the Nash confidence bound NCBi∗,t := µ̂∗ + 2c
√

2µ̂∗ logW
ni∗

.

20

Since event E holds, Lemma 2.8 implies that Algorithm 2 must have executed at least

128kS rounds in Phase 1 (before switching to Phase 2): the termination condition of the first

while-loop (Line 3) is realized only after 128kS rounds.

This lower bound on uniform exploration and event E1 give us ni∗ ≥ 64S. Therefore, the

product ni∗µ
∗ ≥ 64c2 log T . This inequality enables us to express the empirical mean of the

optimal arm as follows

µ̂∗ ≥ µ∗ − c

√
µ∗ log T

ni∗
(since ni∗ ≥ 64S and event E2 holds)

= µ∗ − cµ∗

√
log T

µ∗ni∗

≥ µ∗ − cµ∗

√
1

64c2
(since µ∗ ni∗ ≥ 64c2 log T)

=
7

8
µ∗.

Therefore,

NCBi∗,t = µ̂∗ + 2c

√
2µ̂∗ logW

ni∗

≥ µ̂∗ + 2c

√
µ̂∗ log T

ni∗
(since 2 logW ≥ log T)

≥ µ∗ − c

√
µ∗ log T

ni∗
+ 2c

√
µ̂∗ log T

ni∗
(due to the event E2)

≥ µ∗ − c

√
µ∗ log T

ni∗
+ 2c

√
7µ∗ log T

8ni∗
(since µ̂∗ ≥ 7

8
µ∗)

≥ µ∗

The lemma stands proved.

Lemma 2.10. Assume that the good event E holds and
√
T ≤ W ≤ T . Then, any arm j, with

mean µj ≤ µ∗

64
, is never pulled in all of Phase 2.

Proof. Fix any arm j with mean µj ≤ µ∗

64
. Let rj denote the number of times arm j is pulled

in Phase 1.

We will fist show that rj ≥ 64S. Since event E holds, Lemma 2.8 ensures that Algorithm 2

must have executed at least 128kS rounds in Phase 1 (before switching to Phase 2). This lower

21

bound on uniform exploration and event E1 give us rj ≥ 64S.

Furthermore, event E3 and the fact that rj ≥ 64S imply that (throughout Phase 2) the

empirical mean of arm j satisfies µ̂j ≤ µ∗

32
.

For any round t in Phase 2, write NCBj,t to denote the Nash confidence bound of arm j at

round t. Below we show that the NCBj,t is strictly less than NCBi∗,t and, hence, arm j is not

even pulled once in all of Phase 2.

NCBj,t = µ̂j + 2c

√
2µ̂j logW

rj

≤ µ̂j + 2c

√
2µ̂j log T

rj
(since logW ≤ log T)

≤ µ∗

32
+ 2c

√
µ∗ log T

16rj
(since µ̂j ≤ µ∗

32
)

≤ µ∗

32
+

c

2

√
µ∗ log T

64S
(since rj ≥ 64S)

≤ µ∗

32
+

µ∗

16

=
3

32
µ∗

< NCBi∗,t (via Lemma 2.9)

This completes the proof of the lemma.

Lemma 2.11. Assume that the good event E holds and
√
T ≤ W ≤ T . Then, for any arm

i that is pulled at least once in Phase 2 we have µi ≥ µ∗ − 4c
√

µ∗ log T
Ti−1

, where Ti is the total

number of times that arm i is pulled in Algorithm 2.

Proof. Fix any arm i that is pulled at least once in Phase 2. When arm i was pulled the

Tith time during Phase 2, it must have had the maximum Nash confidence bound value; in

particular, at that round NCBi ≥ NCBi∗ ≥ µ∗; the last inequality follows from Lemma 2.9.

Therefore, we have

µ̂i + 2c

√
2µ̂i log T

Ti − 1
≥ µ∗ (2.10)

Here, µ̂i denotes the empirical mean of arm i at this point.

22

As argued in the proof of Lemmas 2.9 and 2.10, event E ensures that any arm that is pulled

in Phase 2 is sampled at least 64S times in Phase 1. Hence, in particular, we have Ti > 64S.

In addition, since arm i is pulled at least once in Phase 2, Lemma 2.10 implies that µi >
µ∗

64
.

Now, complementing inequality (2.10), we will now upper bound the empirical mean µ̂i in

terms of µ∗. Specifically,

µ̂i ≤ µi + c

√
µi log T

Ti − 1
(since µi >

µ∗

64
and event E2 holds)

≤ µ∗ + c

√
µ∗ log T

64S
(since Ti > 64S and µi ≤ µ∗)

= µ∗ +
µ∗

8
(since S = c2 log T

µ∗)

=
9

8
µ∗ (2.11)

Inequalities (2.10) and (2.11) give us

µ∗ ≤ µ̂i + 2c

√
9µ∗ log T

4(Ti − 1)

≤ µi + c

√
µi log T

Ti − 1
+ 3c

√
µ∗ log T

Ti − 1
(via event E2)

≤ µi + c

√
µ∗ log T

Ti − 1
+ 3c

√
µ∗ log T

Ti − 1
(since µi ≤ µ∗)

≤ µi + 4c

√
µ∗ log T

Ti − 1
.

This completes the proof of the lemma.

Using the above-mentioned lemmas, we will now establish an essential bound on the Nash

social welfare of Algorithm 2.

Lemma 2.12. Consider a bandit instance with optimal mean µ∗ ≥ 512
√
k log T√
T

and assume that√
T ≤ W ≤ T . Then, for any w ≤ W , we have

(
w∏
t=1

E [µIt]

) 1
T

≥ (µ∗)
w
T

(
1− 1000c

√
k log T

µ∗T

)
.

23

Proof. First, for the expected rewards E [µIt] (of Algorithm 2), we will derive a lower bound

that holds for all rounds t. In Algorithm 2, for any round t (i.e., t ≤ W), write pt to denote the

probability that the algorithm is in Phase 1 and, hence, with probability (1− pt) the algorithm

is in Phase 2. That is, with probability pt the algorithm is selecting an arm uniformly at random

and receiving an expected reward of at least µ∗

k
. Complementarily, if the algorithm is in Phase

2 at round t, then its expected reward is at least µ∗

64
(Lemma 2.10). These observations give us

E[µIt] ≥ E [µIt |E] P{E}

≥ E [µIt |E]

(
1− 4

T

)
(Lemma 2.5)

=

(
1− 4

T

)(
pt
µ∗

k
+ (1− pt)

µ∗

64

)
≥
(
1− 4

T

)(
µ∗

64k

)
(2.12)

Towards a case analysis, define threshold T := 968 kS. We observe that Lemma 2.8 ensures

that by the T th round Algorithm 2 would have completed Phase 1; in particular, the termination

condition of the first while-loop (Line 3) in the algorithm would be met by the T th round. Also,

note that, under the lemma assumption on µ∗ and for an appropriately large T we have

T log (64k)

T
=

968 kS log (64k)

T
=

968 kc2 log T log (64k)

µ∗T
≤ 968c2 log(64k)

√
k log T

512
√
T

≤ 1

(2.13)

We establish the lemma considering two complementary and exhaustive cases based on the

given round index w:

Case 1: w ≤ T , and

Case 2: w > T .

For Case 1 (w ≤ T), using inequality (2.12) we obtain

(
w∏
t=1

E[µIt]

) 1
T

≥
(
1− 4

T

)w
T
(

µ∗

64k

)w
T

≥
(
1− 4

T

)
(µ∗)

w
T

(
1

64k

)w
T

=

(
1− 4

T

)
(µ∗)

w
T

(
1

2

)w log(64k)
T

24

≥
(
1− 4

T

)
(µ∗)

w
T

(
1

2

)T log(64k)
T

(since w ≤ T)

=

(
1− 4

T

)
(µ∗)

w
T

(
1− 1

2

)T log(64k)
T

≥ (µ∗)
w
T

(
1− T log(64k)

T

)(
1− 4

T

)
(via inequality (2.13) and Claim 2.1)

≥ (µ∗)
w
T

(
1− T log(64k)

T
− 4

T

)
= (µ∗)

w
T

(
1− 968c2k log T log(64k)

µ∗T
− 4

T

)
= (µ∗)

w
T

(
1− 968c

√
k log T√
µ∗T

· c log (64k)
√
k log T√

µ∗T
− 4

T

)
≥ (µ∗)

w
T

(
1− 1000c

√
k log T

µ∗T

)
(2.14)

The last inequality follows from the fact that c log (64k)
√
k log T√

µ∗T
≤ 1 for an appropriately large

T ; recall that µ∗ ≥ 512
√
k log T√
T

.

For Case 2 (w > T), we partition the Nash social welfare into two terms:

(
w∏
t=1

E [µIt]

) 1
T

=

 T∏
t=1

E [µIt]

 1
T
 w∏

t=T+1

E [µIt]

 1
T

(2.15)

In this product, the two terms account for the rewards accrued in rounds t ≤ T and in

rounds T < t ≤ w, respectively. We will now lower bound these two terms separately.

The first term in the right-hand side of equation (2.15) can be bounded as follows

 T∏
t=1

E[µIt]

 1
T

≥
(
1− 4

T

)T
T
(

µ∗

64k

)T
T

(via inequality (2.12))

≥
(
1− 4

T

)
(µ∗)

T
T

(
1

64k

)T
T

=

(
1− 4

T

)
(µ∗)

T
T

(
1

2

)T log(64k)
T

25

=

(
1− 4

T

)
(µ∗)

T
T

(
1− 1

2

)T log(64k)
T

≥ (µ∗)
T
T

(
1− T log(64k)

T

)(
1− 4

T

)
(2.16)

For establishing the last inequality we note that the exponent T log(64k)
T

≤ 1 (see inequality

(2.13)) and apply Claim 2.1.

For the second term in the right-hand side of equation (2.15), we have

 w∏
t=T+1

E [µIt]

 1
T

≥ E


 w∏

t=T+1

µIt

 1
T

 (Multivariate Jensen’s inequality)

≥ E


 w∏

t=T+1

µIt

 1
T

∣∣∣∣∣∣∣ E
P{E} (2.17)

As mentioned previously, Lemma 2.8 ensures that by the T th round Algorithm 2 would have

completed Phase 1. Hence, any round t > T falls under Phase 2. Now, to bound the expected

value in the right-hand-side of inequality (2.17), we consider the arms that are pulled at least

once after the first T rounds. In particular, with reindexing, let {1, 2, . . . , ℓ} denote the set of

all arms that are pulled at least once after the first T rounds; note that these ℓ arms are in fact

pulled in Phase 2. Also, let mi ≥ 1 denote the number of times arm i ∈ [ℓ] is pulled after the

first T rounds and note that
∑ℓ

i=1mi = w−T . Furthermore, let Ti denote the total number of

times any arm i is pulled in the algorithm. Indeed, (Ti−mi) is the number of times arm i ∈ [ℓ]

is pulled during the first T rounds. With this notation, the expected value in the right-hand-

side of inequality (2.17) can be expressed as E
[(∏T

t=T+1 µIt

) 1
T

∣∣∣∣ E] = E
[(∏ℓ

i=1 µ
mi
T
i

) ∣∣∣ E].
Moreover, since we are conditioning on the good event E, Lemma 2.11 applies to each arm

i ∈ [ℓ]. Hence,

E


 w∏

t=T+1

µIt

 1
T

∣∣∣∣∣∣∣ E
 = E

[(
ℓ∏

i=1

µ
mi
T
i

) ∣∣∣∣∣ E
]

≥ E

 ℓ∏
i=1

(
µ∗ − 4c

√
µ∗ log T

Ti − 1

)mi
T

∣∣∣∣∣∣ E
 (Lemma 2.11)

26

= (µ∗)
w−T
T E

 ℓ∏
i=1

(
1− 4c

√
log T

µ∗(Ti − 1)

)mi
T

∣∣∣∣∣∣ E
 (2.18)

For the last equality, we use
∑ℓ

i=1 mi = w − T . Now under the good event E, recall that each

arm is pulled at least 64S times during the first T rounds. Hence, Ti > 64S, for each arm

i ∈ [ℓ], and we have 4c
√

log T
µ∗(Ti−1)

≤ 4c
√

log T
64c2 log T

= 1
2
for each i ∈ [ℓ]. Therefore, we can apply

Claim 2.1 to reduce the expected value in inequality (2.18) as follows

E

 ℓ∏
i=1

(
1− 4c

√
log T

µ∗(Ti − 1)

)mi
T

∣∣∣∣∣∣ E
 ≥ E

[
ℓ∏

i=1

(
1− 8c mi

T

√
log T

µ∗(Ti − 1)

) ∣∣∣∣∣ E
]

≥ E

[
ℓ∏

i=1

(
1− 8c

T

√
mi log T

µ∗

) ∣∣∣∣∣ E
]

(since Ti ≥ mi + 1)

We can further simplify the above inequality by noting that (1− x)(1− y) ≥ 1− x− y for all

x, y ≥ 0.

E

[
ℓ∏

i=1

(
1− 8c

T

√
mi log T

µ∗

) ∣∣∣∣∣ E
]
≥ E

[
1−

ℓ∑
i=1

(
8c

T

√
mi log T

µ∗

) ∣∣∣∣∣ E
]

= 1−

(
8c

T

√
log T

µ∗

)
E

[
ℓ∑

i=1

√
mi

∣∣∣∣∣ E
]

≥ 1−

(
8c

T

√
log T

µ∗

)
E

√ℓ
√√√√ ℓ∑

i=1

mi

∣∣∣∣∣∣ E


(Cauchy-Schwarz inequality)

≥ 1−

(
8c

T

√
log T

µ∗

)
E
[√

ℓ T
∣∣∣ E] (since

∑
i mi ≤ T)

= 1−

(
8c

√
log T

µ∗T

)
E
[√

ℓ
∣∣∣ E]

≥ 1−

(
8c

√
k log T

µ∗T

)
(since ℓ ≤ k)

27

Using this bound, along with inequalities (2.17), and (2.18), we obtain

 w∏
t=T+1

E [µIt]

 1
T

≥ (µ∗)
w−T
T

(
1− 8c

√
k log T

µ∗T

)
P{E} (2.19)

Inequalities (2.19) and (2.16) provide relevant bounds for the two terms in equation (2.15),

respectively. Hence, for the Nash social welfare of the algorithm, we have

(
w∏
t=1

E [µIt]

) 1
T

≥ (µ∗)
w
T

(
1− T · log(64k)

T
− 4

T

)(
1− 8c

√
k log T

µ∗T

)
P{E}

≥ (µ∗)
w
T

(
1− T · log(64k)

T
− 4

T

)(
1− 8c

√
k log T

µ∗T

)(
1− 4

T

)
(via Lemma 2.5)

≥ (µ∗)
w
T

(
1− T · log(64k)

T
− 8c

√
k log T

µ∗T
− 8

T

)

= (µ∗)
w
T

(
1− 968c2 · k log T · log(64k)

µ∗T
− 8c

√
k log T

µ∗T
− 8

T

)

≥ (µ∗)
w
T

(
1− 1000c

√
k log T

µ∗T

)
.

Here, the final inequality follows along the lines of the last step in the derivation of (2.14). The

lemma stands proved.

2.4.2 Improved Guarantee for Nash Regret

Algorithm 2 not only serves as a subroutine in our anytime algorithm (Algorithm 3 in Section

2.4.3), it also provides an improved (over Theorem 2.1) Nash regret guarantee for settings in

which the horizon of play T is known in advance. In particular, invoking Algorithm 2 with

W = T we obtain Theorem 2.2 (stated next).

Theorem 2.2. For any bandit instance with k arms and given any (moderately large) T , there

exists an algorithm that achieves Nash regret

NRT = O

(√
k log T

T

)
.

28

Proof. The stated Nash regret guarantee follows directly by applying Lemma 2.12 with w = T .

Specifically, NRT ≤ µ∗ − (µ∗)
T
T

(
1− 1000c

√
k log T
µ∗T

)
= 1000c

√
µ∗k log T

T
≤ 1000c

√
k log T

T
. This

completes the proof of the theorem.

2.4.3 Anytime Algorithm

As mentioned previously, our anytime algorithm (Algorithm 3) builds upon the standard dou-

bling trick. The algorithm starts with a guess for the time horizon, i.e., a window of length

W ∈ Z+. Then, for W rounds it either (i) performs uniform exploration, with probability 1
W 2 ,

or (ii) invokes Algorithm 2 as a subroutine (with the remaining probability
(
1− 1

W 2

)
). This

execution for W rounds completes one epoch of Algorithm 3. In the subsequent epochs, the

algorithm doubles the window length and repeats the same procedure till the end of the time

horizon, i.e., till a stop signal is received.

Algorithm 3 Anytime Algorithm for Nash Regret

Input: Number of arms k

1: Initialize W = 1.
2: while the MAB process continues do
3: With probability 1

W 2 set flag = Uniform , otherwise, with probability
(
1− 1

W 2

)
, set flag

= NCB
4: if flag = Uniform then
5: for t = 1 to W do
6: Select It uniformly at random from [k]. Pull arm It and observe reward Xt.
7: end for
8: else if flag = NCB then
9: Execute Modified NCB(k, W).
10: end if
11: Update W ← 2×W .
12: end while

Algorithm 3 gives us Theorem 2.3 (stated next and proved in Section 2.4.4).

Theorem 2.3. There exists an anytime algorithm that, at any (moderately large) round T ,

achieves a Nash regret

NRT = O

(√
k log T

T
log T

)
.

We will, throughout, use h to denote an epoch index in Algorithm 3 and the corresponding

window length as Wh. Note that h = logWh +1. Also, let e denote the total number of epochs

29

during the T rounds of Algorithm 3. We have e ≤ log2 T +1. Furthermore, write Rh to denote

the number of rounds before the hth epoch begins, i.e., Rh =
∑h−1

z=1 Wz. Note that R1 = 0 and

the hth epoch starts at round (Rh +1). In addition, let h∗ be the smallest value of h for which

Wh ≥
√
T , i.e., h∗ is the first epoch in which the window length is at least

√
T .

We next provide three claims connecting these constructs.

Claim 2.2. Wh = Rh + 1.

Proof. In Algorithm 3, the window size doubles after each epoch, i.e., Wz = 2z−1 for all epochs

z ≥ 1. Therefore, Rh =
∑h−1

z=1 Wz =
∑h−1

z=1 2
z−1 = 2h−1 − 1 = Wh − 1. Hence, we have

Wh = Rh + 1.

The next claim notes that the window length in the last epoch, e, is at most the horizon of

play T .

Claim 2.3. We ≤ T .

Proof. The definition of Rh implies that each epoch h starts at round Rh + 1. Hence, the last

epoch e, in particular, starts at round Re + 1. Indeed, Re + 1 ≤ T and, via Claim 2.2, we get

that We ≤ T .

Recall that h∗ denotes the smallest value of h for which Wh ≥
√
T .

Claim 2.4. Rh∗ < 2
√
T .

Proof. By definition of h∗, we have Wh∗−1 <
√
T . Also, note that Rh∗ = Rh∗−1 + Wh∗−1 =

2Wh∗−1 − 1 < 2
√
T ; here, the last equality follows from Claim 2.2.

The following lemma provides a bound on the Nash social welfare accumulated by Algorithm

3 in an epoch h ≥ h∗.

Lemma 2.13. In any MAB instance with mean µ∗ ≥ 512
√
k log T√
T

, the following inequality holds

for each epoch h ≥ h∗ and all rounds r ∈ {Rh + 1, Rh + 2, . . . , Rh+1}:(
r∏

t=Rh+1

E [µIt]

) 1
T

≥ (µ∗)
r−Rh

T

(
1− 1001c

√
k log T

µ∗T

)
.

Proof. Fix any epoch h ≥ h∗ and let Fh denote the event that Algorithm 3 executes the Modified

NCB algorithm (Algorithm 2) in epoch h; see Line 9. Note that P{Fh} = 1− 1
W 2

h
. The definition

30

of h∗ and Claim 2.3 give us
√
T ≤ Wh ≤ T . Hence, we can apply Lemma 2.12 with event Fh

to obtain:(
r∏

t=Rh+1

E [µIt]

) 1
T

≥

(
r∏

t=Rh+1

E [µIt |Fh] P{Fh}

) 1
T

≥

(
r∏

t=Rh+1

E [µIt |Fh]

(
1− 1

W 2
h

)) 1
T

≥
(
1− 1

W 2
h

)(r∏
t=Rh+1

E [µIt |Fh]

) 1
T

≥ (µ∗)
r−Rh

T

(
1− 1

W 2
h

)(
1− 1000c

√
k log T

µ∗T

)
(Lemma 2.12)

≥ (µ∗)
r−Rh

T

(
1− 1

T

)(
1− 1000c

√
k log T

µ∗T

)
(since Wh ≥

√
T)

≥ (µ∗)
r−Rh

T

(
1− 1000c

√
k log T

µ∗T
− 1

T

)

≥ (µ∗)
r−Rh

T

(
1− 1001c

√
k log T

µ∗T

)
.

The lemma stands proved

2.4.4 Proof of Theorem 2.3

For establishing the theorem, we focus on MAB instances in which the optimal mean µ∗ ≥
512

√
k log T√
T

; otherwise, the stated guarantees on the Nash regret directly holds.

Recall that h∗ denotes the smallest value of h for which Wh ≥
√
T . We will bound the

Nash social welfare accrued by Algorithm 3 by first considering the initial Rh∗ rounds and then

separately analyzing the remaining rounds.

For the first Rh∗ rounds, note that for every epoch g ≤ h∗ we have Wg <
√
T . Hence, for

each such epoch g, Algorithm 3 executes uniform sampling with probability 1
W 2

g
≥ 1

T
; see Line

6. Therefore, for all rounds t ≤ Rh∗ , we have E [µIt] ≥ µ∗

k
1
T
. This bound gives us

(
Rh∗∏
t=1

E [µIt]

) 1
T

≥
(
µ∗

kT

)Rh∗
T

31

= (µ∗)
Rh∗
T

(
1

2

)Rh∗ log (kT)

T

≥ (µ∗)
Rh∗
T

(
1− Rh∗ log (kT)

T

)
(via Claim 2.1)

≥ (µ∗)
Rh∗
T

(
1− 2 log (kT)√

T

)
(2.20)

Here, the last inequality follows from Claim 2.4.

For the remaining T − Rh∗ rounds, we perform an epoch-wise analysis and invoke Lemma

2.13. Specifically,

 T∏
t=Rh∗+1

E [µIt]

 1
T

=

 e−1∏
h=h∗

R(h+1)∏
t=Rh+1

E [µIt]

 1
T

·

(
T∏

t=Re+1

E [µIt]

) 1
T

=
e−1∏
h=h∗

(
Rh+Wh∏
t=Rh+1

E [µIt]

) 1
T

·

(
T∏

t=Re+1

E [µIt]

) 1
T

≥
e−1∏
h=h∗

(µ∗)
Wh
T

(
1− 1001c

√
k log T

µ∗T

)
· (µ∗)

T−Re
T

(
1− 1001c

√
k log T

µ∗T

)
(via Lemma 2.13)

≥ (µ∗)1−
Rh∗
T

e∏
j=1

(
1− 1001c

√
k log T

µ∗T

)

≥ (µ∗)1−
Rh∗
T

(
1− 1001c

√
k log T

µ∗T

)log(2T)

(since e ≤ log T + 1)

≥ (µ∗)1−
Rh∗
T

(
1− 1001c

√
k log T log(2T)√

µ∗T

)
(2.21)

The last inequality follows from the fact that (1− x)(1− y) ≥ 1− x− y, for all x, y ≥ 0.

Inequalities (2.20) and (2.21), give us an overall bound on the Nash social welfare of Algo-

rithm 3:

(
T∏
t=1

E [µIt]

) 1
T

=

(
Rh∗∏
t=1

E [µIt]

) 1
T

 T∏
t=Rh∗+1

E [µIt]

 1
T

≥ µ∗
(
1− 2 log (kT)√

T

)(
1− 1001c

√
k log T log(2T)√

µ∗T

)

32

≥ µ∗
(
1− 2 log (kT)√

T
− 1001c

√
k log T log(2T)√

µ∗T

)
.

Therefore, the Nash regret of Algorithm 3 satisfies

NRT = µ∗ −

(
T∏
t=1

E [µIt]

) 1
T

≤ 2µ∗ log (kT)√
T

+ 1001c

√
µ∗k log T log(2T)√

T
≤ 1003c

√
k log T log(2T)√

T
.

The theorem stands proved.

2.5 Missing Proofs from Section 2.3.1

2.5.1 Proof of Lemma 2.1

In this section we prove that the good event G holds with probability at least
(
1− 4

T

)
. Towards

this, we first state two standard concentration inequalities, Lemmas 2.14 and 2.15; see, e.g.,

[DP09, Chapter 1.6].

Lemma 2.14 (Hoeffding’s Inequality). Let Y1, Y2, . . . , Yn be independent random variables dis-

tributed in [0, 1]. Consider their average Ŷ := Y1+...+Yn

n
and let ν = E[Ŷ] be its expected value.

Then, for any 0 ≤ δ ≤ 1,

P
{∣∣∣Ŷ − ν

∣∣∣ ≥ δν
}
≤ 2 exp

(
−δ2

3
nν

)
.

Lemma 2.15 (Hoeffding Extension). Let Y1, Y2, . . . , Yn be independent random variables dis-

tributed in [0, 1]. Consider their average Ŷ := Y1+...+Yn

n
and suppose E[Ŷ] ≤ νH . Then, for any

0 ≤ δ ≤ 1,

P
{
Ŷ ≥ (1 + δ) νH

}
≤ exp

(
−δ2

3
nνH

)
.

Using these concentration bounds, we establish two corollaries for the empirical means of

the arms.

Corollary 2.1. Consider any arm i, with mean µi >
6
√
k log k log T√

T
, and sample count n such

that T̃
2k
≤ n ≤ T . Let µ̂i be the empirical mean of arm i’s rewards, based on n independent

33

draws. Then,

P

{
|µi − µ̂i| ≥ 3

√
µi log T

n

}
≤ 2

T 3
.

Proof. We apply Lemma 2.14 (Hoeffding’s inequality), with Ys as the sth independent sample

from arm i and for all 1 ≤ s ≤ n. Also, we instantiate the lemma with δ = 3
√

log T
µin

and note

that δ < 1, since µi >
6
√
k log k log T√

T
and n ≥ T̃

2k
= 8

k

√
kT log T
log k

. Specifically,

P

{
|µi − µ̂i| ≥ 3

√
µi log T

n

}
= P

{
|µi − µ̂i| ≥ 3

√
log T

µin
µi

}

≤ 2 exp

(
−9 log T

3µin
nµi

)
(via Lemma 2.14)

= 2 exp (−3 log T)

=
2

T 3
.

Corollary 2.2. Consider any arm j, with mean µj ≤ 6
√
k log k log T√

T
, and sample count n, such

that T̃
2k
≤ n ≤ T . Let µ̂j be the empirical mean of arm j’s rewards, based on n independent

draws. Then,

P
{
µ̂j ≥

9
√
k log k log T√

T

}
≤ 1

T 3
.

Proof. We invoke Lemma 2.15, with δ = 1/2 and νH = 6
√
k log k log T√

T
, to obtain

P
{
µ̂j ≥

9
√
k log k log T√

T

}
= P

{
µ̂j ≥ (1 +

1

2
)νH

}
≤ exp

(
− 1

12
n

6
√
k log k log T√

T

)
≤ exp

(
− 1

12

8

k

√
kT log T

log k

6
√
k log k log T√

T

)
(since n ≥ 8

k

√
kT log T
log k

)

= exp (−4 log T)

≤ 1

T 3
.

34

Along with Corollary 2.1 and 2.2, we will invoke the Chernoff Bound (stated next).

Lemma 2.16 (Chernoff Bound). Let Z1, . . . , Zn be independent Bernoulli random variables.

Consider the sum S =
∑n

r=1 Zr and let ν = E[S] be its expected value. Then, for any ε ∈ [0, 1],

we have

P {S ≤ (1− ε)ν} ≤ exp

(
−νε2

2

)
, and

P {S ≥ (1 + ε)ν} ≤ exp

(
−νε2

3

)
.

We now prove Lemma 2.1 by bounding the probabilities of the three sub-events G1, G2, and

G3, respectively. Recall that G = G1 ∩G2 ∩G3.

For Gc
1 (i.e., the complement of G1), we will invoke Lemma 3.11 for every arm and then

apply the union bound. In particular, fix any arm i and write random variable Zr to indicate

whether arm i is selected in round r of Phase I, or not. That is, Zr = 1 if arm i is picked in

round r and, otherwise, Zr = 0. Note that ni, the number of times arm i is sampled in Phase

I, satisfies ni =
∑T̃

r=1 Zr. Now, using the fact that the algorithm selects an arm uniformly at

random in every round of Phase I and setting ε = 1/2 along with ν = T̃
k
= 16

√
T log T
k log k

, Lemma

3.11 gives us

P

{
ni <

T̃

2k

}
≤ exp

(
−16
√
T log T

8
√
k log k

)
≤ 1

T 2
(2.22)

Here, the last inequality follows from the theorem assumption that T is sufficiently large;

specifically, T ≥ (k log k)2 suffices. Inequality (2.22) and the union bound give us

P {Gc
1} ≤

1

T 2
k ≤ 1

T
(2.23)

Next, we address Gc
2. Note that the arms and counts considered in G2, respectively, satisfy

the assumption in Corollary 2.1. Hence, the corollary ensures that, for each arm i, with mean

µi >
6
√
k log k log T√

T
and each count s ≥ T̃

2k
, we have P

{
|µi − µ̂i,s| ≥ 3

√
µi log T

s

}
≤ 2

T 3 . Therefore,

applying the union bound we get

P{Gc
2} ≤

2

T 3
kT ≤ 2

T
(2.24)

35

In addition, Corollary 2.2 provides a probability bound for Gc
3. The arms and counts

considered in G3 satisfy the requirements of Corollary 2.2. Therefore, for any arm j, with mean

µj ≤ 6
√
k log k log T√

T
and count s ≥ T̃

2k
, the probability P

{
µ̂j ≥ 9

√
k log k log T√

T

}
≤ 1

T 3 . Again, an

application of union bound gives us

P{Gc
3} ≤

1

T 3
kT ≤ 1

T
(2.25)

Inequalities (2.23), (2.24), and (2.25) lead to desired bound

P {G} = 1− P {Gc} ≥ 1− P {Gc
1} − P {Gc

2} − P {Gc
3} ≥ 1− 4

T
.

2.5.2 Proof of Claim 2.1

This section restates and proves Claim 2.1.

Claim 2.1. For all reals x ∈
[
0, 1

2

]
and all a ∈ [0, 1], we have (1− x)a ≥ 1− 2ax.

Proof. The binomial theorem gives us

(1− x)a = 1− ax+
a(a− 1)

2!
x2 − a(a− 1)(a− 2)

3!
x3 + . . .

= 1− ax− ax

(
(1− a)

2!
x+

(1− a)(2− a)

3!
x2 +

(1− a)(2− a)(3− a)

4!
x3 + . . .

)
(2.26)

We can bound the multiplied term as follows

(1− a)

2!
x+

(1− a)(2− a)

3!
x2+

(1− a)(2− a)(3− a)

4!
x3 + . . .

≤ 1

2!
x+

1 · 2
3!

x2 +
1 · 2 · 3

4!
x3 + . . . (since a ∈ (0, 1))

=
1

2
x+

1

3
x2 +

1

4
x3 . . .

≤ x+ x2 + x3 . . .

=
x

1− x
(since x < 1)

Hence, equation (2.26) reduces to

(1− x)a ≥ 1− ax− ax
x

1− x
.

36

Furthermore, since x ≤ 1
2
, the ratio x

1−x
≤ 1. Therefore, we obtain (1 − x)a > 1 − 2ax. This

completes the proof of the claim.

2.5.3 Proofs of Lemma 2.2 and 2.3

Next, we restate and prove Lemma 2.2.

Lemma 2.2. Let NCBi∗,t be the Nash confidence bound of the optimal arm i∗ at round t.

Assume that the good event G holds and also µ∗ ≥ 32
√
k log k log T√

T
. Then, for all rounds t > T̃

(i.e., for all rounds in Phase II), we have NCBi∗,t ≥ µ∗.

Proof. Fix any round t > T̃ and write ni∗ to denote the number of times the optimal arm i∗

has been pulled before that round. Also, let µ̂∗ denote the empirical mean of arm i∗ at round

t. Hence, by definition, at this round the Nash confidence bound NCBi∗,t := µ̂∗ + 4
√

µ̂∗ log T
ni∗

.

Note that under the good event G (in particular, under G1) we have ni∗ ≥ T̃
2k

= 8
√
T log T√
k log k

. This

inequality and the assumption µ∗ ≥ 32
√
k log k log T√

T
imply

µ∗ ni∗ ≥
32
√
k log k log T√

T

8
√
T log T√
k log k

= 256 log T (2.27)

In addition, the event G (specifically, G2) gives us

µ̂∗ ≥ µ∗ − 3

√
µ∗ log T

ni∗

= µ∗ − 3µ∗

√
log T

µ∗ni∗

≥ µ∗ − 3µ∗

√
1

256
(via inequality (2.27))

=
13

16
µ∗ (2.28)

Therefore,

NCBi∗,t = µ̂∗ + 4

√
µ̂∗ log T

ni∗

≥ µ∗ − 3

√
µ∗ log T

ni∗
+ 4

√
µ̂∗ log T

ni∗
(via event G2)

≥ µ∗ − 3

√
µ∗ log T

ni∗
+ 4

√
13µ∗ log T

16ni∗
(via inequality (2.28))

37

≥ µ∗ + 0.6

√
µ∗ log T

ni∗
.

The lemma stands proved.

We restate and prove Lemma 2.3 below.

Lemma 2.3. Consider a bandit instance with optimal mean µ∗ ≥ 32
√
k log k log T√

T
and assume that

the good event G holds. Then, any arm j, with mean µj ≤ 6
√
k log k log T√

T
, is never pulled in all of

Phase II.

Proof. Fix any arm j with mean µj ≤ 6
√
k log k log T√

T
. Let rj denote the number of times arm j is

pulled in Phase I. Under event G (in particular, G1) we have rj ≥ T̃
2k
. In such a case, the good

event (in particular, G3) additionally ensures that (throughout Phase II) the empirical mean

of arm j satisfies: µ̂j <
9
√
k log k log T√

T
.

Furthermore, under the good event, NCBi∗,t ≥ µ∗ for all rounds t in Phase II (Lemma 2.2).

For any round t in Phase II (i.e., for any t ≥ T̃ = 16
√

kT log T
log k

), write NCBj,t to denote the

Nash confidence bound of arm j at round t. Below we show that the NCBj,t is strictly less than

NCBi∗,t and, hence, arm j is not even pulled once in all of Phase II.

NCBj,t = µ̂j + 4

√
µ̂j log T

rj

≤ 9
√
k log k log T√

T
+ 4

√
9
√
k log k log T√

T
· log T

rj
(via event G3)

≤ 9
√
k log k log T√

T
+ 4

√
9
√
k log k log T√

T
· k log T

√
log k

8
√
Tk log T

(since rj ≥ T̃
2k

under G1)

<
32
√
k log k log T√

T
≤ µ∗ ≤ NCBi∗,t (via Lemma 2.2)

This completes the proof of the lemma.

Finally, we prove Lemma 2.4.

Lemma 2.4. Consider a bandit instance with optimal mean µ∗ ≥ 32
√
k log k log T√

T
and assume that

the good event G holds. Then, for any arm i that is pulled at least once in Phase II we have

µi ≥ µ∗ − 8

√
µ∗ log T

Ti − 1
,

where Ti is the total number of times that arm i is pulled in the algorithm.

38

Proof. Any arm j with mean µj ≤ 6
√
k log k log T√

T
is never pulled in Phase II (Lemma 2.3). Hence,

we focus on arms i with µi > 6
√
k log k log T√

T
. Note that when arm i was pulled the Tith time

during Phase II, it must have had the maximum Nash confidence bound value; in particular, at

that round NCBi ≥ NCBi∗ ≥ µ∗. Here, the last inequality follows from Lemma 2.2. Therefore,

with µ̂i denoting the empirical mean of arm i at this point, we have

µ̂i + 4

√
µ̂i log T

Ti − 1
≥ µ∗ (2.29)

Complementing inequality (2.29), we will now upper bound the empirical mean µ̂i in terms of

µ∗. Note that, since arm i is pulled at least once in Phase II and event G1 holds, we have

Ti >
T̃
2k

= 8
√
T log T√
k log k

. Using this fact and event G2 we obtain

µ̂i ≤ µi + 3

√
µi log T

Ti − 1
(since G2 holds)

≤ µ∗ + 3

√
µ∗ log T
8
√
T log T√
k log k

(since Ti >
8
√
T log T√
k log k

and µi ≤ µ∗)

= µ∗ + 3

√
µ∗
√
k log k log T

8
√
T

≤ µ∗ + 3

√
µ∗µ∗

256
(since µ∗ ≥ 32

√
k log k log T√

T
)

=
19

16
µ∗ (2.30)

Inequalities (2.29) and (2.30) give us

µ∗ ≤ µ̂i + 4

√
19µ∗ log T

16(Ti − 1)

≤ µi + 3

√
µi log T

Ti − 1
+ 4

√
19µ∗ log T

16(Ti − 1)
(via event G2)

≤ µi + 3

√
µ∗ log T

Ti − 1
+ 4

√
19µ∗ log T

16(Ti − 1)
(since µi ≤ µ∗)

≤ µi + 8

√
µ∗ log T

Ti − 1
.

This completes the proof of the lemma.

39

2.6 Missing Proofs from Section 2.4.1

2.6.1 Proof of Lemma 2.5

This section shows that the good event E occurs with probability at least
(
1− 4

T

)
. Toward

this, we will upper bound the probabilities of the complements of the events E1, E2, and E3,

respectively, and apply union bound to establish the lemma.

For Ec
1, we invoke the Chernoff bound (Lemma 3.11) with random variable Zi,t indicating

whether the arm i is selected in round t of uniform sampling, or not. That is, Zi,t = 1 if the arm

i is picked in round t and, otherwise, Zi,t = 0. Using the fact that the algorithm selects an arm

uniformly at random in every round of Phase 1 and setting ε = 1/2 along with ν = r
k
≥ 128S,

Lemma 3.11 along with union bound gives us1

P {Ec
1} ≤ 2 · exp

(
−128 · c2 log T

12µ∗

)
· kT ≤ 1

T
(2.31)

Next, we address Ec
2. Note that for each arm i, with mean µi >

µ∗

64
, and for each count

s ≥ 64S, we have c
√

log T
µis

< 1. Hence, Lemma 2.14 gives us

P

{
|µi − µ̂i,s| ≥ c

√
µi log T

s

}
= P

{
|µi − µ̂i,s| ≥ c

√
log T

µi s
µi

}
≤ 2 exp

(
−c2 log T

3µi s
sµi

)
=

2

T 3
.

Therefore, via the union bound we obtain

P{Ec
2} ≤

2

T 3
kT ≤ 2

T
(2.32)

Finally, we address Ec
3. Consider any arm j, with mean µj ≤ µ∗

64
and any count s ≥ 64S.

Lemma 2.15 (applied with νH = µ∗

64
and δ = 1) leads to

P
{
µ̂j,s ≥

µ∗

32

}
≤ exp

(
−1

3

µ∗

64
s

)
= exp

(
−c2 log T

3

)
=

1

T 3
.

Again, an application of union bound gives us

P{Ec
3} ≤

1

T 3
kT ≤ 1

T
(2.33)

1Recall that S = c2 log T
µ∗ and µ∗ ≤ 1.

40

Inequalities (2.31), (2.32), and (2.33) establish the lemma:

P {E} = 1− P {Ec} ≥ 1− P {Ec
1} − P {Ec

2} − P {Ec
3} ≥ 1− 4

T
.

2.6.2 Proof of Supporting Lemmas

Here, we restate and prove Lemma 2.6.

Lemma 2.6. Under the event E, for any arm i and any sample count n ≤ 192S, we have

n µ̂i,n < 210c2 log T .

Proof. Write N := 192S. Note that, for any arm i, the product n µ̂i,n is equal to the sum of

the rewards observed for arm i in the first n samples. Therefore, for all n ≤ N , we have

n µ̂i,n ≤ N µ̂i,N (2.34)

Using inequality (2.34), we first show that the lemma holds for arms j whose mean µj ≤ µ∗

64
.

Note that for any such arm j, event E3 gives us µ̂j,N ≤ µ∗

32
. Therefore,

n µ̂j,n ≤
via (2.34)

N µ̂j,N ≤ 192S
µ∗

32
= 6c2 log T.

Next, we complete the proof by proving the lemma for arms i whose mean µi ≥ µ∗

64
. For any

such arm i, we have

µ̂i,N ≤ µi + c

√
µi log T

N
(via event E2)

≤ µ∗ + c

√
µ∗ log T

N
(since µi ≤ µ∗)

= µ∗ +
µ∗
√
192

(since N = 192S = 192c2 log T
µ∗)

<
210

192
µ∗

Hence, even for arms with high enough means we have N µ̂i,N < 210
192

µ∗ 192S = 210c2 log T .

Lemma 2.7 is established next.

Lemma 2.7. Under the event E, for any sample count n ≥ 484S, we have n µ̂i∗,n ≥ 462c2 log T .

41

Proof. Write M := 484S and note that, for all n ≥M , we have n µ̂i,n ≥M µ̂i,M . Furthermore,

µ̂i∗,M ≥ µ∗ − c

√
µ∗ log T

M
(via event E2)

= µ∗ − µ∗
√
484

(since M = 484S = 484c2 log T
µ∗)

=
21

22
µ∗

Hence, for any n ≥M = 484S, the total observed reward n µ̂i,n ≥ 21
22
µ∗ 484S = 462c2 log T .

Next, we restate and prove Lemma 2.8

Lemma 2.8. Assume that
√
T ≤ W ≤ T . Also, let random variable τ denote the num-

ber of rounds of uniform sampling at which the sum of observed rewards for any arm exceeds

420c2 logW (i.e., only after τ rounds of uniform sampling we have maxi niµ̂i > 420c2 logW).

Then, under event E, the following bounds hold

128 kS ≤ τ ≤ 968 kS.

Proof. Write t1 := 128kS and note that event E (specifically, E1) ensures that at t1 rounds

of uniform sampling, no arm has been sampled more than 192S times. This, in fact, implies

that no arm gets sampled more than 192S times throughout the first t1 rounds of uniform

exploration. Hence, Lemma 2.6 implies that, till the round t1, for every arm i the sum of

observed rewards ni µ̂i is less than 210c2 log T ≤ 420c2 logW . Therefore, τ ≥ 128kS.

In addition, let t2 := 968kS. Under event E, we have that each arm i is sampled at least

484S times by the t2th round of uniform sampling. Therefore, Lemma 2.7 implies that, by round

t2 and for the optimal arm i∗, the sum of rewards ni∗µ̂i∗ is at least 462c2 log T > 420c2 logW .

Hence, τ ≤ 968kS. This completes the proof of the lemma.

2.7 Other Formulations of Nash Regret

This section compares Nash regret NRT with two variants, NR
(0)
T and NR

(1)
T , defined below.

For completeness, we also detail the relevant aspects of the canonical bandit model (see, e.g.,

[LS20, Chapter 4]), which is utilized in analysis of MAB algorithms.

For a bandit instance with k arms and horizon of play T , the canonical model works with

a k× T reward table (Yi,s)i∈[k],s∈[T] that populates T independent samples for each arm i ∈ [k].

That is, Yi,s is sth independent draw from the ith distribution. As before, for a given bandit

42

algorithm, the random variable It ∈ [k] denotes the arm pulled in round t ∈ {1, . . . , T}. Recall
that µIt denotes the associated mean. Furthermore, in each round t, the reward observed, Xt,

is obtained from the reward table: Xt = YIt,t.

Therefore, the sample space Ω := {1, 2, . . . , k}T×[0, 1]k×T . Each element of the sample space

is a tuple ω = ((I1, I2, . . . , IT), (Yi,s)i∈[k],s∈[T]), denoting the list of arms pulled at each time t

and the rewards table. Precisely, let F1 = P({1, 2, . . . , k}T) be the power set of {1, 2, . . . , k}T ,
F2 = B(Rk×T) be the Borel σ-algebra on Rk×T , and F = σ(F1 × F2) be the product σ-algebra.

The probability measure on (Ω,F) is induced by the bandit instance and the algorithm. The

regret definitions and analysis are based on this probability measure.

Recall that Nash regret is defined as NRT := µ∗ −
(∏T

t=1 EIt [µIt]
) 1

T
. Towards a variant,

one can first consider the difference between the optimal mean, µ∗, and geometric mean of the

realized rewards:

NR
(0)
T := µ∗ − EX1,...XT

(T∏
t=1

Xt

) 1
T

 .

Indeed, NR
(0)
T is an unreasonable metric: Even if the algorithm pulls the optimal arm in

every round, a single draw Xt can be equal to zero with high probability (in a general MAB

instance). In such cases, NR
(0)
T would be essentially as high as µ∗.

A second variant is obtained as follows:

NR
(1)
T := µ∗ − EI1,...IT

(T∏
t=1

µIt

) 1
T

 .

While NR
(1)
T upper bounds Nash regret NRT (see Theorem 2.4 below), it does not conform

to a per-agent ex ante assessment. We also note the regret guarantee we obtain for Phase II

(of Algorithm 1) in fact holds for NR
(1)
T ; see inequality (2.4) and the following analysis. From

a technical point of view, we also note that it is unreasonable to expect bounds for NR
(1)
T that

hold through all the rounds: consider a bandit instance in which all, expect one of the arms

(i.e., all except the optimal arm), have zero rewards. As soon as, in the initial (say k) rounds

one of these arms get pulled, NR
(1)
T becomes as high as µ∗ and cannot be salvaged.

Theorem 2.4. For any MAB instance and bandit algorithm we have NR
(0)
T ≥ NR

(1)
T ≥ NRT .

Proof. Since the geometric mean is a concave function, the multivariate form of Jensen’s in-

equality gives us E
[(∏T

t=1 µIt

) 1
T

]
≤
(∏T

t=1 E [µIt]
) 1

T
. Therefore, NR

(1)
T ≥ NRT .

43

Next, we compare NR
(0)
T and NR

(1)
T . We have

E

(T∏
t=1

Xt

) 1
T

 = E I1,...,IT
X1,...,XT

(T∏
t=1

Xt

) 1
T


= EI1,...,IT

EX1,...,XT

(T∏
t=1

Xt

) 1
T

∣∣∣∣∣∣ (It)t
 

≤ EI1,...,IT

(T∏
t=1

EXt [Xt | (It)t]

) 1
T

 (Multivariate Jensen’s inequality)

= EI1,...,IT

(T∏
t=1

µIt

) 1
T

 .

This last inequality gives us NR
(0)
T ≥ NR

(1)
T . The theorem stands proved.

2.8 Counterexample for the UCB algorithm

This section shows that, in general, the Nash regret of UCB does not decrease as a function

of T . In particular, there exist MAB instances in which the UCB algorithm could incur Nash

regret close to 1. Recall that, in each round t, the UCB algorithm pulls an arm

At = argmax
i∈[k]

(
µ̂i +

√
2 log T

ni,t

)
,

here µ̂i denotes the empirical mean of arm i’s reward at round t and ni,t denotes the number

of times arm i has been pulled before the tth round. Also, write UCBi,t to denote the upper

confidence bound associated with arm i, i.e.,

UCBi,t := µ̂i +

√
2 log T

ni,t

.

UCB algorithm follows an arbitrary, but consistent, tie breaking rule.

We will next detail an MAB instance that illustrates the high Nash regret of UCB. Consider

an instance with two arms, arm1 and arm2, and time horizon T , such that T > 25 log T . Also,

let the means of the two arms be µ1 = (2e)−T and µ2 = 1, respectively. The rewards of both

44

the arms follow a Bernoulli distribution.1

Write random variable Xi,t to denote the reward observed for arm i in the tth round. For

any given sequence of Xi,t-s (as in the canonical bandit model), the order of arm pulls in UCB

is fixed. That is, for a given sequence of Xi,t-s, one can deterministically ascertain the arm that

will be pulled in a particular round r–this can be done by comparing the values UCBi,r-s and

applying the tie-breaking rule.

Furthermore, write Z to denote the event wherein, for arm1, the first T pulls yield a reward

of 0. We have P{Z} =
(
1− (2e)−T

)T ≥ 1− (2e)−TT .

We will next prove that, under event Z, there exist at least log T rounds in which arm1 is

pulled. Assume, towards a contradiction, that arm1 is pulled less than log T times. Since, for

arm2, we have X2,t = 1 for all rounds t, under event Z the sequence of arm pulls in UCB is

fixed. Now, consider the round s in which arm2 is pulled the
(
T
2
+ 1
)
th time. Then, it must be

the case that UCB1,s ≤ UCB2,s. However, UCB1,s ≥
√
2 (given that arm1 has been pulled less

than log T many times) and UCB2,s = 1 +
√

4 log T
T

. This leads to a contradiction and, hence,

shows that arm1 is pulled at least log T times. Moreover, the rounds in which arm1 is pulled

are fixed under event Z.

Write R to denote the specific rounds in which arm1 is pulled under the event Z. Note that

|R| ≥ log T . For any r ∈ R we have

E[µIr] = E[µIr |Z] P{Z} + E [µIr |Zc] P{Zc}

≤ E[µIr |Z] · 1 + E [µIr |Zc] (2e)−TT (since P{Zc} ≤ (2e)−TT)

≤ (2e)−T + E [µIr |Zc] (2e)−TT (since Ir = arm1 under Z)

≤ (2e)−T + (2e)−TT (since E[µIr |Zc] ≤ 1)

≤ e−T (2.35)

Here, the last inequality follows from the fact that 2T > T + 1. Also, observe that inequality

(2.35) is a bound on the expected value at round r; it holds irrespective of whether Z holds or

not.

Therefore, the Nash social welfare of UCB satisfies

(
T∏
t=1

E[µIt]

) 1
T

≤

(∏
r∈R

E[µIr]

) 1
T

(since E[µIt] ≤ 1 for all t)

≤
(
e−T
) |R|

T (via inequality (2.35))

1Hence, arm2 is a point mass.

45

≤
(
e−T
) log T

T (since |R| ≥ log T)

= e− log T

=
1

T

Hence, the Nash regret of UCB is at least
(
1− 1

T

)
.

2.9 Conclusion and Future Work

This chapter considers settings in which a bandit algorithm’s expected rewards, {E [µIt]}Tt=1,

correspond to values distributed among T agents. In this ex ante framework, we apply Nash

social welfare (on the expected rewards) to evaluate the algorithm’s performance and thereby

formulate the notion of Nash regret. Notably, in cumulative regret, the algorithm is assessed

by the social welfare it generates. That is, while cumulative regret captures a utilitarian ob-

jective, Nash regret provides an axiomatically-supported primitive for achieving both fairness

and economic efficiency.

We establish an instance-independent (and essentially tight) upper bound for Nash regret.

Obtaining a Nash regret bound that explicitly depends on the gap parameters, ∆i := µ∗−µ, is an
interesting direction of future work. It would also be interesting to formulate regret under more

general welfare functions. Specifically, one can consider the generalized-mean welfare [Mou04]

which—in the current context and for parameter p ∈ (−∞, 1]—evaluates to
(
1
T

∑
t E [µIt]

p)1/p.
Generalized-means encompass various welfare functions, such as social welfare (p = 1), egal-

itarian welfare (p → −∞), and Nash social welfare (p → 0). Hence, these means provide a

systematic tradeoff between fairness and economic efficiency. Studying Nash regret in broader

settings—such as contextual or linear bandits—is a meaningful research direction as well.

46

Chapter 3

Nash Regret Bounds for Linear Bandits

This chapter focuses on obtaining tight upper bounds for Nash regret in the stochastic linear

bandits framework. Nash regret measures the performance of a bandit algorithm by quantifying

the difference between the unknown optimal reward and the geometric mean of the expected

rewards accumulated over the rounds. This formulation aligns with the well-studied Nash

social welfare (NSW) function, which captures the collective welfare generated by the bandit

algorithm.

We consider the stochastic linear bandits problem with a horizon of T rounds and a set of

arms X in an ambient dimension of d. Specifically, we examine settings where the stochas-

tic reward associated with each arm in X follows a non-negative, ν-sub Poisson distribu-

tion. In this context, we propose an algorithm that achieves a Nash regret upper bound of

O
(√

dν
T
log(T|X|)

)
. Furthermore, for linear bandit instances with an infinite set of arms X, we

derive a Nash regret bound of O
(

d
5
4 ν

1
2√

T
log(T)

)
. It is worth noting that these results apply to

scenarios with bounded, positive rewards, as bounded random variables are sub-Poisson.

Our proposed linear bandit algorithm builds upon the successive elimination method and

incorporates novel technical insights. These insights include tailored concentration bounds, as

well as the utilization of sampling via John ellipsoid in conjunction with the Kiefer-Wolfowitz

optimal design.

3.1 Our Contributions and Techniques.

We consider the stochastic linear bandits setting with a set of arms X over a finite horizon of

T rounds. Since we consider the welfarist viewpoint, we assume that the rewards across all the

rounds are positive and, in particular, model the distribution of the arm rewards to be ν-sub

Poisson, for parameter ν ∈ R+. As mentioned previously, our goal is to minimize the Nash

47

regret NRT. We develop a novel algorithm LinNash that obtains essentially optimal Nash

regret guarantees for this setting. Specifically, for a finite set of arms X ⊂ Rd, our algorithm

LinNash achieves Nash regret NRT = O
(√

dν
T
log(T|X|)

)
. For infinite sets of arms, a modified

version of LinNash achieves Nash regret NRT = O
(

d
5
4 ν

1
2√

T
log(T)

)
.

Note that an ostensible approach for minimizing Nash regret is to take the logarithm of the

observed rewards and, then, solve the average regret problem. However, this approach has the

following shortcomings: (i) Taking log implies the modified rewards can have a very large range

possibly making the regret vacuous and (ii) This approach leads to a multiplicative guarantee

and not an additive one. In a chapter 2 we studied Nash regret in the context of stochastic

multi-armed bandits (with bounded rewards) and provided optimal guarantees. This chapter

notably generalizes this result to linear bandits.

Recall that Nash regret is a strengthening of the average regret; the AM-GM inequality

implies that, for any bandit algorithm, the Nash regret is never less than its average regret.

Hence, in the linear bandits context, the known Ω
(
d/
√
T
)
lower bound on average regret (see

[LS20], Chapter 24) holds for Nash regret as well.1 This observation implies that, up to a

logarithmic factor, our upper bound on Nash regret is tight with respect to the number of

rounds T. We also note that for instances in which the number of arms |X| = ω(2d), the

Nash-regret dependence on d has a slight gap. Tightening this gap is an interesting direction

of future work.

We note that bounded, positive random variables are sub Poisson (Lemma 3.1). Hence,

our results hold for linear bandit instances wherein the stochastic rewards are bounded and

positive. This observation also highlights the fact that the current work is a generalization of

the result obtained in chapter 2. In addition, notice that, by definition, Poisson distributions

are 1-sub Poisson. Hence, our guarantees further hold of rewards that are not necessarily

sub Gaussian. Given the recent interest in obtaining regret guarantees beyond sub Gaussian

rewards[MY16, AJK21], our study of sub Poisson rewards is interesting in its own right.

Our linear bandit algorithm, LinNash, has two parts. In the first part, we develop a novel

approach of sampling arms such that in expectation the reward obtained is a linear function

of the center of John Ellipsoid [How97]. Such a strategy ensures that the expected reward in

any round of the first part is sufficiently large. The second part of LinNash runs in phases

of exponentially increasing length. In each phase, we sample arms according to a distribution

that is obtained as a solution of a concave optimization problem, known as D-optimal design.

We construct confidence intervals at each phase and eliminate sub-optimal arms. A key novelty

1This lower bound on average regret is obtained for instances in which the set of arms X are the corners of
a hypercube [LS20].

48

in our algorithm and analysis is the use of confidence widths that are estimate dependent.

We define these widths considering multiplicative forms of concentration bounds and crucially

utilize the sub Poisson property of the rewards. The tail bounds we propose might be of

independent interest.

Other Related Work: There has been a recent surge in interest to achieve fairness guarantees

in the context of multi-armed bandits; see, e.g., [JKMR16b, CKM+19, PGNN21, BBLB20b,

HMS21b]. However, these works mostly consider fairness across arms and, in particular, impose

fairness constraints that require each arm to be pulled a pre-specified fraction of times. By

contrast, our work considers fairness across rounds.

Alternative Regret Formulations. In the current work, for the welfare computation, each

agent t’s value is considered as the expected reward in round t. One can formulate stronger

notions of regret by, say, considering the expectation of the geometric mean of the rewards,

rather than the geometric mean of the expectations. However, as discussed in chapter 2, it is

not possible to obtain non-trivial guarantees for such reformulations in general: every arm must

be pulled at least once. Hence, if one considers the realized rewards (and not their expectations),

even a single pull of a zero-reward arm will make the geometric mean zero.

3.2 Problem Formulation and Preliminaries

We will write [m] to denote the set {1, 2, . . . ,m}. For a matrix X, let Det(X) to denote the

determinant of X. For any discrete probability distribution λ with sample space Ω, write

Supp(λ) ≜ {x ∈ Ω : PrX∼λ {X = x} > 0} to denote the points for which the probability mass

assigned by λ is positive. For a vector a ∈ Rd and a positive definite matrix V ∈ Rd×d, we will

denote ||a||V :=
√
aTVa. Finally, let B := {x ∈ Rd | ||x||2 = 1} be the d-dimensional unit ball.

We address the problem of stochastic linear bandits with a time horizon of T ∈ Z+ rounds.

Here, an online algorithm (decision maker) is given a set of arms X ⊂ Rd. Each arm corresponds

to a d-dimensional vector. Furthermore, associated with each arm x ∈ X, we have a stochastic

reward rx ∈ R+. In the linear bandits framework, the expected value of the reward rx is

modeled to be a linear function of x ∈ Rd. In particular, there exists an unknown parameter

vector θ∗ ∈ Rd such that, for each x ∈ X, the associated reward’s expected value E[rx] = ⟨x, θ∗⟩.
Given the focus on welfare contexts, we will, throughout, assume that the rewards are positive,

rx > 0, for all x ∈ X.

The online algorithm (possibly randomized) must sequentially select an armXt in each round

t ∈ [T] and, then, it observes the corresponding (stochastic) reward rXt > 0.1 For notational

convenience, we will write rt to denote rXt . In particular, if in round t the selected arm Xt = x,

1Note that, for a randomized online algorithm, the selected arm Xt is a random variable.

49

then the expected reward is ⟨x, θ∗⟩, i.e., E[rt | Xt = x] = ⟨x, θ∗⟩. We will, throughout, use x∗

to denote the optimal arm, x∗ = argmaxx∈X⟨x, θ∗⟩ and θ̂ to denote estimator of θ∗.

In the stochastic linear bandits framework, our overarching objective is to minimize the

Nash regret, defined as follows:

NRT := max
x∈X
⟨x, θ∗⟩ −

(
T∏

t=1

E[⟨Xt, θ
∗⟩]

)1/T

(3.1)

Note that the definition of Nash regret is obtained by applying the Nash social welfare (geo-

metric mean) onto ex ante rewards, E [⟨Xt, θ
∗⟩],1 accrued across the T rounds.

3.2.1 Sub-Poisson Rewards

In order to model the environment with positive rewards (rx > 0), we assume that the rewards

rx associated with the arms x ∈ X are ν-sub Poisson, for some parameter ν > 0. Formally,

their moment-generating function satisfies the following bound

E
[
eλ rx

]
≤ exp

(
ν−1E[rx]

(
eνλ − 1

))
= exp

(
ν−1⟨x, θ∗⟩

(
eνλ − 1

))
for all λ ∈ R. (3.2)

Note that a Poisson random variable is 1-sub Poisson. To highlight the generality of ν-sub-

Poisson distributions, we note that bounded, non-negative random variables are sub-Poisson

(Lemma 3.1). Further, in Lemma 3.2, we establish a connection between non-negative sub-

Gaussian and sub-Poisson random variables. .

Lemma 3.1. Any non-negative random variable X ∈ [0,B] is B-sub-Poisson, i.e., if mean

E[X] = µ, then for all λ ∈ R, we have E[eλX] ≤ exp
(
B−1µ

(
eBλ − 1

))
.

Lemma 3.2. Let X be a non-negative sub-Gaussian random variable X with mean µ = E[X]

and sub-Gaussian norm σ. Then, X is also
(

σ2

µ

)
-sub-Poisson.

The proofs of Lemmas 3.1 and 3.2 appear in Appendix 3.6. Lemma 3.2 has useful instantia-

tions. In particular, the lemma implies that the half-normal random variable, with variance of

σ, is also a (Cσ)-sub-Poisson, where C is a constant (independent of distribution parameters).

Similarly, for other well-studied, positive sub-Gaussian random variables (including truncated

and folded normal distributions), the sub-Poisson parameter is small.

Next, we discuss the necessary preliminaries for our algorithm and analysis.

1Here, the expectation is with respect to the random variable Xt.

50

3.2.2 Optimal Design.

Write ∆(X) to denote the probability simplex associated with the set of arms X. Let λ ∈ ∆(X)

be such a probability distribution over the arms, with λx denoting the probability of selecting

arm x. The following optimization problem, defined over the set of arms X, is well-known and

is referred to as the G-optimal design problem.

Minimize g(λ) ≜ max
x∈X
||x||2U(λ)−1 , where λ ∈ ∆(X) and U(λ) =

∑
x∈X

λxxx
T (3.3)

The solution to (3.3) provides the optimal sequence of arm pulls (for a given budget of rounds)

to minimize the confidence width of the estimated rewards for all arms x ∈ X. The G-optimal

design problem connects to the following optimization problem (known as D-optimal design

problem):

Maximize f(λ) ≜ logDet(U(λ)), where λ ∈ ∆(X) and U(λ) =
∑
x∈X

λxxx
T (3.4)

The lemma below provides an important result of Kiefer and Wolfowitz [KW60].

Lemma 3.3 (Kiefer-Wolfowitz). If the set X is compact and X spans Rd, then there exists

λ∗ ∈ ∆(X) supported over at most d(d + 1)/2 arms such that λ∗ minimizes the objective in

equation (3.3) with g(λ∗) = d. Furthermore, λ∗ is also a maximizer of the D-optimal design

objective, i.e., λ∗ maximizes the function f(λ) = logDet(U(λ)) subject to λ ∈ ∆(X).

At several places in our algorithm, our goal is to find a probability distribution that min-

imizes the non-convex optimization problem (3.3). However, instead we will maximize the

concave function f(λ) = logDet(U(λ)) over λ ∈ ∆(X). The Frank-Wolfe algorithm, for in-

stance, can be used to solve the D-optimal design problem (3.4) and compute λ∗ efficiently

([LS20], Chapter 21). Lemma 3.3 ensures that this approach works, since the G-optimal and

the D-optimal design problems have the same optimal solution λ∗ ∈ ∆(X), which satisfies

Supp(λ∗) ≤ d(d+ 1)/2.1

3.2.3 John Ellipsoid.

For any convex body K ⊂ Rd, a John ellipsoid is an ellipsoid with maximal volume that can

be inscribed within K. It is known that K itself is contained within the John Ellipsoid dilated

1Even though the two optimization problems (3.3) and (3.4) share the optimal solution, the optimal objective
function values can be different.

51

Algorithm 4 GenerateArmSequence (Subroutine to generate Arm Sequence)

Input: Arm set X and sequence length T̃ ∈ Z+.

1: Find the probability distribution λ ∈ ∆(X) by maximizing the following objective

logDet(U(λ0)) subject to λ0 ∈ ∆(X) and Supp(λ0) ≤ d(d+ 1)/2 (3.5)

2: Initialize multiset S = ∅ and set A = Supp(λ). Also, initialize count cz = 0, for each arm z ∈ A.
3: Compute distribution U as described in Section 3.3.1.
4: for i = 1 to T̃ do
5: With probability 1/2 set flag = SAMPLE-U, otherwise, set flag = D/G-OPT.
6: if flag = SAMPLE-U or A = ∅ then
7: Sample an arm x̂ from the distribution U , and update multiset S← S ∪ {x̂}.
8: else if flag = D/G-OPT then
9: Pick the next arm z in A (round robin).

10: Update multiset S← S ∪ {z} and increment count cz ← cz + 1.
11: If cz ≥ ⌈λz T̃/3⌉, then update A← A \ {z}.
12: end if
13: end for
14: return multiset S

by a factor of d. Formally,1

Lemma 3.4 ([GLS12]). Let K ⊂ Rd be a convex body (i.e., a compact, convex set with a

nonempty interior). Then, there exists an ellipsoid E (called the John ellipsoid) that satisfies

E ⊆ K ⊆ c + d(E − c). Here, c ∈ Rd denotes the center of E and c + d(E − c) refers to the

(dialated) set {c+ d(x− c) : x ∈ E}.

3.3 Our Algorithm LinNash and Main Results

In this section, we detail our algorithm LinNash (Algorithm 5), and establish an up-

per bound on the Nash regret achieved by this algorithm. Subsection 3.3.1 details Part I of

LinNash and related analysis. Then, Subsection 3.3.2 presents and analyzes Part II of the

algorithm. Using the lemmas from these two subsections, the regret bound for the algorithm

is established in Subsection 3.3.3.

3.3.1 Part I: Sampling via John Ellipsoid and Kiefer-Wolfowitz Op-

timal Design

As mentioned previously, Nash regret is a more challenging objective than average regret: if in

any round t ∈ [T], the expected2 reward E[rt] is zero (or very close to zero), then geometric mean

1The ellipsoid E considered in Lemma 3.4 is also the ellipsoid of maximal volume contained in K [GLS12].
2Here, the expectation is over randomness in algorithm and the reward noise.

52

Algorithm 5 LinNash (Nash Regret Algorithm for Finite Set of Arms)

Input: Arm set X and horizon of play T .

1: Initialize matrix V← [0]d,d and number of rounds T̃ = 3
√
Tdν log(T|X|).

Part I
2: Generate arm sequence S for the first T̃ rounds using Algorithm 4.
3: for t = 1 to T̃ do
4: Pull the next arm Xt from the sequence S, observe corresponding reward rt, and update V ←

V +XtX
T
t

5: end for
6: Set estimate θ̂ := V−1

(∑T̃
t=1 rtXt

)
7: Compute confidence bounds LNCB(x, θ̂, T̃/3) and UNCB(x, θ̂, T̃/3), for all x ∈ X (see equation

(3.7))

8: Set X̃ =
{
x ∈ X : UNCB(x, θ̂, T̃/3) ≥ maxz∈X LNCB(z, θ̂, T̃/3)

}
and initialize T′ = 2

3 T̃

Part II
9: while end of time horizon T is reached do

10: Initialize V = [0]d,d to be an all zeros d× d matrix and s = [0]d to be an all-zeros vector.
// Beginning of new phase.

11: Find the probability distribution λ ∈ ∆(X̃) by maximizing the following objective

logDet(U(λ0)) subject to λ0 ∈ ∆(X̃) and Supp(λ0) ≤ d(d+ 1)/2. (3.6)

12: for each arm a in Supp(λ) do
13: Pull arm a for the next ⌈λa T′⌉ rounds. Update V← V + ⌈λaT

′⌉ · aaT .
14: Observe ⌈λa T′⌉ corresponding rewards z1, z2, . . . and update s← s+ (

∑
j zj)a.

15: end for
16: Set estimate θ̂ = V−1s and compute LNCB(x, θ̂,T′) and UNCB(x, θ̂,T′), for all x ∈ X (see

equation (3.7))

17: Set X̃ =
{
x ∈ X̃ : UNCB(x, θ̂,T′) ≥ maxz∈X LNCB(z, θ̂,T′)

}
. // End of phase.

18: Update T′ ← 2 T′.
19: end while

(
∏T

t=1 E[rXt])
1/T goes to zero, even if the expected rewards in the remaining rounds are large.

Hence, we need to ensure that in every round t ∈ [T], specifically the rounds in the beginning of

the algorithm, the expected rewards are bounded from below. In [BKMS22], this problem was

tackled for stochastic multi-armed bandits (MAB) by directly sampling each arm uniformly at

random in the initial rounds. Such a sampling ensured that, in each of those initial rounds, the

expected reward is bounded from below by the average of the expected rewards. While such a

uniform sampling strategy is reasonable for the MAB setting, it can be quite unsatisfactory in

the current context of linear bandits. To see this, consider a linear bandit instance in which,

all—except for one—arms in X are orthogonal to θ∗. Here, a uniform sampling strategy will

lead to an expected reward of ⟨x∗, θ∗⟩/|X|, which can be arbitrarily small for large cardinality

53

X.

To resolve this issue we propose a novel approach in the initial T̃ := 3
√
Tdν log(T|X|)

rounds. In particular, we consider the convex hull of the set of arms X—denoted as cvh(X)—

and find the center c ∈ Rd of the John ellipsoid E for the convex hull cvh(X). Since E ⊆
cvh(X), the center c of the John ellipsoid is contained within cvh(X) as well. Furthermore,

via Carathéodory’s theorem [Eck93], we can conclude that the center c can be expressed as a

convex combination of at most (d+1) points in X. Specifically, there exists a size-(d+1) subset

Y := {y1, . . . , yd+1} ⊆ X and convex coefficients α1, . . . , αd+1 ∈ [0, 1] such that c =
∑d+1

i=1 αiyi

with
∑d+1

i=1 αi = 1. Therefore, the convex coefficients induce a distribution U ∈ ∆(X) of support

size d+ 1 and with Ex∼U [x] = c.

Lemma 3.5 below asserts that sampling according to the distribution U leads to an expected

reward that is sufficiently large. Hence, U is used in the subroutine GenerateArmSequence

(Algorithm 4).

In particular, the purpose of the subroutine is to carefully construct a sequence (multiset) of

arms S, with size |S| = T̃ and to be pulled in the initial T̃ rounds. The sequence S is constructed

such that (i) upon pulling arms from S, we have a sufficiently large expected reward in each

pull, and (ii) we obtain an initial estimate of the inner product of the unknown parameter

vector θ∗ with all arms in X. Here, objective (i) is achieved by considering the above-mentioned

distribution U . Now, towards the objective (ii), we compute distribution λ ∈ ∆(X) by solving

the optimization problem (also known as the D-optimal design problem) stated in equation

(3.5).

We initialize sequence S = ∅ and run the subroutine GenerateArmSequence for T̃ iterations.

In each iteration (of the for-loop in Line 4), with probability 1/2, we sample an arm according

to the distribution U (Line 7) and include it in S. Also, in each iteration, with remaining

probability 1/2, we consider the computed distribution λ and, in particular, pick arms z from

the support of λ in a round-robin manner. We include such arms z in S while ensuring that, at

the end of the subroutine, each such arm z ∈ Supp(λ) is included at least ⌈λzT̃/3⌉ times. We

return the curated sequence of arms S at the end of the subroutine.

Our main algorithm LinNash (Algorithm 5) first calls subroutine GenerateArmSequence

to generated the sequence S. Then, the algorithm LinNash sequentially pulls the arms Xt

from S, for 1 ≤ t ≤ T̃ rounds. For these initial T̃ = |S| rounds, let rt denote the noisy, observed
rewards. Using these T̃ observed rewards, the algorithm computes the ordinary least squares

(OLS) estimate θ̂ (see Line 6 in Algorithm 5); in particular, θ̂ := (
∑T̃

t=1 XtX
T
t)

−1(
∑T̃

t=1 rtXt).

The algorithm uses the OLS estimate θ̂ to eliminate several low rewarding arms (in Lines 7 and

8 in Algorithm 5). This concludes Part I of the algorithm LinNash.

54

Before detailing Part II (in Subsection 3.3.2), we provide a lemma to be used in the analysis

of Part I of LinNash.

Lemma 3.5. Let c ∈ Rd denote the center of a John ellipsoid for the convex hull cvh(X) and

let U ∈ ∆(X) be a distribution that satisfies Ex∼U x = c. Then, it holds that

Ex∼U [⟨x, θ∗⟩] ≥
⟨x∗, θ∗⟩
(d+ 1)

.

Proof. Lemma 3.4 ensures that there exists a positive definite matrix H with the property that{
x ∈ Rd :

√
(x− c)TH(x− c) ≤ 1

}
⊆ cvh(X) ⊆

{
x ∈ Rd :

√
(x− c)TH(x− c) ≤ d

}
.

Now, write y := c− x∗−c
d

and note that

√
(y − c)TH(y − c) =

√
(x∗ − c)TH(x∗ − c)

d2
≤ 1 (since x∗ ∈ cvh(X))

Therefore, y ∈ cvh(X). Recall that, for all arms x ∈ X, the associated reward (rx) is non-

negative and, hence, the rewards’ expected value satisfies ⟨x, θ∗⟩ ≥ 0. This inequality and the

containment y ∈ cvh(X) give us ⟨y, θ∗⟩ ≥ 0. Substituting y = c − x∗−c
d

in the last inequality

leads to ⟨c, θ∗⟩ ≥ ⟨x∗, θ∗⟩/(d + 1). Given that Ex∼U [x] = c, we obtain the desired inequality

Ex∼U⟨x, θ∗⟩ = ⟨c, θ∗⟩ ≥ ⟨x∗,θ∗⟩
(d+1)

.

Note that at each iteration of the subroutine GenerateArmSequence, with probability 1/2,

we insert an arm into S that is sampled according to U . Using this observation and Lemma

3.5, we obtain that, for any round t ∈ [T̃] and for the random arm Xt pulled from the sequence

S according to our procedure, the observed reward rXt must satisfy E[rXt] ≥
⟨x∗,θ∗⟩
2(d+1)

.1

Further, recall that in the subroutine GenerateArmSequence, we insert arms x ∈ Supp(λ) at

least ⌈λxT̃/3⌉ times, where λ corresponds to the solution of D-optimal design problem defined

in equation (3.5). Therefore, we can characterize the confidence widths of the estimated rewards

for each arm in X computed using the least squares estimate θ̂ computed in Line 7 in Algorithm

5.

Broadly speaking, we can show that all arms with low expected reward (less than a thresh-

old) also have an estimated reward at most twice the true reward. On the other hand, high

rewarding arms must have an estimated reward to be within a factor of 2 of the true reward.

1Here, the expectation is over both the randomness in including arm Xt in S and the noise in the reward.

55

Thus, based on certain high probability confidence bounds (equation (3.7)), we can eliminate

arms in X with true expected reward less than some threshold, with high probability.

3.3.2 Part II: Phased Elimination via Estimate Dependent Confi-

dence Widths

Note that while analyzing average regret via confidence bound algorithms, it is quite common to

use, for each arm x, a confidence width (interval) that does not depend on x’s estimated reward.

This is a reasonable design choice for bounding average regret, since the regret incurred at each

round is the sum of confidence intervals that grow smaller with the round index and, hence, this

choice leads to a small average regret. However, for the analysis of the Nash regret, a confidence

width that is independent of the estimated reward can be highly unsatisfactory: the confidence

width might be larger than the optimal ⟨x∗, θ∗⟩. This can in turn allow an arm with extremely

low reward to be pulled leading to the geometric mean going to zero. In order to alleviate

this issue, it is vital that our confidence intervals are reward dependent. This in turn, requires

one to instantiate concentration bounds similar to the multiplicative version of the standard

Chernoff bound. In general, multiplicative forms of concentration bounds are much stronger

than the additive analogues [KQ21]. In prior work [BKMS22] on Nash regret for the stochastic

multi-armed bandits setting, such concentration bounds were readily available through the

multiplicative version of the Chernoff bound. However, in our context of linear bandits, the

derivation of analogous concentration bounds (and the associated confidence widths) is quite

novel and requires a careful use of the sub-Poisson property.

In particular, we use the following confidence bounds (with estimate dependent confidence

widths) in our algorithm. We define the lower and upper confidence bounds considering any

arm x, any least squares estimator ϕ (of θ∗), and t the number of observations used to compute

the estimator ϕ. That is, for any triple (x, ϕ, t) ∈ X×Rd×[T], we define Lower Nash Confidence

Bound (LNCB) and Upper Nash Confidence Bound (UNCB) as follows:

LNCB(x, ϕ, t) :=⟨x, ϕ⟩−6
√
⟨x, ϕ⟩νd log(T|X|)

t

UNCB(x, ϕ, t) :=⟨x, ϕ⟩+6

√
⟨x, ϕ⟩νd log(T|X|)

t
. (3.7)

As mentioned previously, the confidence widths in equation (3.7) are estimate dependent.

Next, we provide a high level overview of Part II in Algorithm 5. This part is inspired from

the phased elimination algorithm for the average regret ([LS20], Chapter 21); a key distinction

here is to use the Nash confidence bounds defined in (3.7). Part II in Algorithm 5 begins

56

with the set of arms X̃ ⊆ X obtained after an initial elimination of low rewarding arms in

Part I . Subsequently, Part II runs in phases of exponentially increasing length and eliminates

sub-optimal arms in every phase.

Suppose at the beginning of the ℓth phase, X̃ is the updated set of arms. We solve the

D-optimal design problem (see (3.6)) corresponding to X̃ to obtain a distribution λ ∈ ∆(X̃).

For the next O(d2 + 2ℓT̃) rounds, we pull arms a in the support of λ (Line 13): each arm

a ∈ Supp(λ) is pulled ⌈λaT
′⌉ times where T′ = O(2ℓT̃). Using the data covariance matrix and

the observed noisy rewards, we recompute: (1) an improved estimate θ̂ (of θ∗) and (2) improved

confidence bounds for every surviving arm. Then, we eliminate arms based on the confidence

bounds and update the set of surviving arms (Lines 16 and 17).

The following lemma provides the key concentration bound for the least squares estimate.

Lemma 3.6. Let x1, x2, . . . , xs ∈ Rd be a fixed set of vectors and let r1, r2, . . . , rs be independent

ν-sub-Poisson random variables satisfying Ers = ⟨xs, θ
∗⟩ for some unknown θ∗. Further, let

matrix V =
∑s

j=1 xjx
T
j and θ̂ = V−1

(∑
j rjxj

)
be the least squares estimator of θ∗. Consider

any z ∈ Rd with the property that zTV−1xj ≤ γ for all j ∈ [s]. Then, for any δ ∈ [0, 1] we have

P
{
⟨z, θ̂⟩ ≥ (1 + δ)⟨z, θ∗⟩

}
≤ exp

(
−δ2⟨z, θ∗⟩

3νγ

)
and (3.8)

P
{
⟨z, θ̂⟩ ≤ (1− δ)⟨z, θ∗⟩

}
≤ exp

(
−δ2⟨z, θ∗⟩

2νγ

)
. (3.9)

Lemma 3.6 is established in Appendix 3.7. Using this lemma, we can show that the optimal

arm x∗ is never eliminated with high probability.

Lemma 3.7. Consider any bandit instance in which for the optimal arm x∗ ∈ X we have

⟨x∗, θ∗⟩ ≥ 192
√

d ν
T

log(T|X|). Then, with probability at least
(
1− 4 logT

T

)
, the optimal arm x∗

always exists in the surviving set X̃ in Part I and in every phase in Part II of Algorithm 5.

Finally, using Lemmas 3.6 and 3.7, we show that, with high probability, in every phase of

Part II all the surviving arms x ∈ X̃ have sufficiently high reward means.

Lemma 3.8. Consider any phase ℓ in Part II of Algorithm 5 and let X̃ be the surviving set of

arms at the beginning of that phase. Then, with T̃ =
√

dνT log(T |X|), we have

Pr

{
⟨x, θ∗⟩ ≥ ⟨x∗, θ∗⟩ − 25

√
3dν⟨x∗, θ∗⟩ log (T|X|)

2ℓ · T̃
for all x ∈ X̃

}
≥ 1− 4 logT

T
(3.10)

Here, ν is the sub-Poisson parameter of the stochastic rewards.

57

The proofs of the Lemmas 3.7 and 3.8 are deferred to Appendix 3.8.

3.3.3 Main Result

This section states and proves the Nash regret guarantee achieved by LinNash (Algorithm 5).

Theorem 3.1. For any given stochastic linear bandits problem with (finite) set of arms X ⊂ Rd,

time horizon T ∈ Z+, and ν-sub-Poisson rewards, Algorithm 5 achieves Nash regret

NRT = O

(
β

√
d ν

T
log(T|X|)

)
.

Here, β = max {1, ⟨x∗, θ∗⟩ log d}, with x∗ ∈ X denoting the optimal arm and θ∗ the (unknown)

parameter vector.

Proof. We will assume, without loss of generality, that ⟨x∗, θ∗⟩ ≥ 192
√

d ν
T

log(T|X|), otherwise
the stated Nash Regret bound directly holds (see equation (3.1)). Write E to denote the ’good’

event identified in Lemma 3.8; the lemma ensures that P{E} ≥ 1 − 4 logT
T

. During Part I of

Algorithm 5, the product of expected rewards, conditioned on E, satisfies

T̃∏
t=1

E[⟨Xt, θ
∗⟩ | E]

1
T ≥

(
⟨x∗, θ∗⟩
2(d+ 1)

) T̃
T

(via Lemma 3.5)

= ⟨x∗, θ∗⟩
T̃
T

(
1− 1

2

) log(2(d+1))T̃
T

≥ ⟨x∗, θ∗⟩
T̃
T

(
1− log(2(d+ 1))T̃

T

)
.

For analyzing Part II, we will utilize Lemma 3.8. Write Bℓ to denote all the rounds t that

belong to ℓth phase (in Part II). Also, let T′
ℓ denote the associated phase-length parameter,

i.e., T′
ℓ = 2ℓ T̃/3. Note that in each phase ℓ (i.e., in the for-loop at Line 12 of Algorithm 5),

every arm a in Supp(λ) (the support of D-optimal design) is pulled ⌈λaT
′
ℓ⌉ times. Given that

|Supp(λ)| ≤ d(d + 1)/2, we have |Bℓ| ≤ T′
ℓ +

d(d+1)
2

. By construction T′
ℓ ≥

d(d+1)
2

and, hence,

|Bℓ| ≤ 2T′
ℓ. Since the phase length parameter, T′

ℓ, doubles after each phase, the algorithm

would have at most logT phases. Hence, the product of expected rewards in Part II satisfies

T∏
t=T̃+1

E[⟨Xt, θ
∗⟩ | E]

1
T =

∏
Bℓ

∏
t∈Bℓ

E[⟨Xt, θ
∗⟩ | E]

1
T

58

≥
∏
Bℓ

(
⟨x∗, θ∗⟩ − 25

√
d ν ⟨x∗, θ∗⟩ log (T|X|)

T′
ℓ

) |Bℓ|
T

(Lemma 3.8)

≥ ⟨x∗, θ∗⟩
T−T̃
T

logT∏
ℓ=1

(
1− 25

√
d ν log (T|X|)
⟨x∗, θ∗⟩T′

ℓ

) |Bℓ|
T

≥ ⟨x∗, θ∗⟩
T−T̃
T

logT∏
ℓ=1

(
1− 50

|Bℓ|
T

√
d ν log (T|X|)
⟨x∗, θ∗⟩T′

ℓ

)
.

The last inequality follows from the fact that (1 − x)r ≥ (1 − 2rx), for any r ∈ [0, 1] and

x ∈ [0, 1/2]. Note that the term
√

dν log (T|X|)
⟨x∗,θ∗⟩T′

ℓ
≤ 1/2, since ⟨x∗, θ∗⟩ ≥ 192

√
dν
T
log(T|X|) along

with T′
ℓ ≥ 2

√
Tdν logT|X| and T ≥ e4. We further simplify the expression as follows

logT∏
ℓ=1

(
1− 50

|Bℓ|
T

√
d ν log (T|X|)
⟨x∗, θ∗⟩T′

ℓ

)
≥

logT∏
ℓ=1

(
1− 100

√
T′

ℓ

T

√
d ν log (T|X|)
⟨x∗, θ∗⟩

)
(since |Bℓ| ≤ 2T′

ℓ)

≥ 1− 100

T

√
d ν log (T|X|)
⟨x∗, θ∗⟩

(
logT∑
ℓ=1

√
T′

ℓ

)
(since (1− a)(1− b) ≥ 1− a− b for a, b ≥ 0)

≥ 1− 100

T

√
d ν log (T|X|)
⟨x∗, θ∗⟩

(√
T logT

)
(via Cauchy-Schwarz inequality)

≥ 1− 100

√
dν

T⟨x∗, θ∗⟩
log (T|X|).

Combining the lower bound for the expected rewards in the two parts we get

T∏
t=1

E[⟨Xt, θ
∗⟩]

1
T ≥

T∏
t=1

(
E[⟨Xt, θ

∗⟩ | E] P{E}
) 1

T

≥ ⟨x∗, θ∗⟩

(
1− log(2(d+ 1))T̃

T

)(
1− 100

√
dν

T⟨x∗, θ∗⟩
log (T|X|)

)
P{E}

≥ ⟨x∗, θ∗⟩

(
1− log(2(d+ 1))T̃

T
− 100

√
dν

T⟨x∗, θ∗⟩
log (T|X|)

)
P{E}

59

≥ ⟨x∗, θ∗⟩

(
1− log(2(d+ 1))T̃

T
− 100

√
dν

T⟨x∗, θ∗⟩
log (T|X|)

)(
1− 4 logT

T

)

≥ ⟨x∗, θ∗⟩

(
1−

log(2(d+ 1))3
√

Tdν log(T|X|)
T

− 100

√
dν

T⟨x∗, θ∗⟩
log (T|X|)− 4 logT

T

)

≥ ⟨x∗, θ∗⟩ − 100

√
⟨x∗, θ∗⟩d ν

T
log (T|X|)− 6⟨x∗, θ∗⟩

√
d ν log(T|X|)

T
log(2(d+ 1)).

Therefore, the Nash Regret can be bounded as

NRT = ⟨x∗, θ∗⟩ −

(
T∏

t=1

E[⟨Xt, θ
∗⟩]

)1/T

≤ 100

√
⟨x∗, θ∗⟩d ν

T
log (T|X|) + 6

√
d ν log(T|X|)

T
log(2(d+ 1))⟨x∗, θ∗⟩ (3.11)

≤
(
100
√
⟨x∗, θ∗⟩+ 6 log(2(d+ 1))⟨x∗, θ∗⟩

) √dν

T
log (T|X|) (3.12)

Hence, with β = max
{
1,
√
⟨x∗, θ∗⟩, ⟨x∗, θ∗⟩ log d

}
= max {1, ⟨x∗, θ∗⟩ log d}, from equation

(3.12) we obtain the desired bound on Nash regret NRT = O
(
β
√

d ν
T

log(T|X|)
)
. The theorem

stands proved.

Note that, in Theorem 3.1, lower the value of the optimal expected reward, ⟨x∗, θ∗⟩, stronger
is the Nash regret guarantee. In particular, with a standard normalization assumption that

⟨x∗, θ∗⟩ ≤ 1 and for 1-sub Poisson rewards, we obtain a Nash regret of O
(√

d
T
log(T|X|)

)
.

Also, observe that the regret guarantee provided in Theorem 3.1 depends logarithmically on

the size of X. Hence, the Nash regret is small even when |X| is polynomially large in d.

Computational Efficiency of LinNash. We note that Algorithm 5 (LinNash) executes in

polynomial time. In particular, the algorithm calls the subroutine GenerateArmSequence

in Part I for computing the John Ellipsoid. Given a set of arm vectors as input, this ellipsoid

computation can be performed efficiently (see Chapter 3 in [Tod16]). In fact, for our purposes

an approximate version of the John Ellipsoid suffices, and such an approximation can be found

much faster [CCLY19]; specifically, in time O(|X|2d). Furthermore, the algorithm solves the

D-optimal design problem, once in Part I and at most O(logT) times in Part II. The D-optimal

design is a concave maximization problem, which can be efficiently solved using, say, the Frank-

Wolfe algorithm with rank-1 updates. Each iteration takes O(|X|2) time, and the total number

of iterations is at most O(d) (see, e.g., Chapter 21 of [LS20] and Chapter 3 in [Tod16]). Overall,

60

we get that LinNash is a polynomial-time algorithm.

3.4 Extension of Algorithm LinNash for Infinite Arms

Algorithm 6 LinNash (Nash Confidence Bound Algorithm for Infinite Set of Arms)

Input: Arm set X and horizon of play T .

1: Initialize matrix V← [0]d,d and number of rounds T̃ = 3
√
Td2.5ν log(T).

Part I
2: Generate arm sequence S for the first T̃ rounds using Algorithm 4.
3: for t = 1 to T̃ do
4: Pull the next arm Xt from the sequence S.
5: Observe reward rt and update V← V +XtX

T
t

6: end for
7: Set estimate θ̂ := V−1

(∑T̃
t=1 rtXt

)
8: Find γ = maxz∈X⟨z, θ̂⟩

9: Update X̃← {x ∈ X : ⟨x, θ̂⟩ ≥ γ − 16

√
3 γ d

5
2 ν log (T)

T̃
}

10: T′ ← 2
3 T̃

Part II
11: while end of time horizon T is reached do
12: Initialize V = [0]d,d to be an all zeros d× d matrix and s = [0]d to be an all-zeros vector.

// Beginning of new phase.

13: Find the probability distribution λ ∈ ∆(X̃) by maximizing the following objective

logDet(V(λ)) subject to λ ∈ ∆(X̃) and Supp(λ) ≤ d(d+ 1)/2. (3.13)

14: for each arm a in Supp(λ) do
15: Pull arm a for the next ⌈λa T′⌉ rounds.
16: Observe rewards and Update V← V + ⌈λaT

′⌉ · aaT
17: Observe ⌈λa T′⌉ corresponding rewards z1, z2, . . . and update s← s+ (

∑
j zj)a.

18: end for
19: Estimate θ̂ = V−1

(∑
t∈E rtXt

)
20: Find γ = maxz∈X⟨z, θ̂⟩

21: X̃← {x ∈ X : ⟨x, θ̂⟩ ≥ γ − 16

√
γ d

5
2 log (T)
T′ }

22: T′ ← 2× T′ // End of phase.

23: end while

The regret guarantee in Theorem 3.1 depends logarithmically on |X|. Such a dependence

makes the guarantee vacuous when the set of arms X is infinitely large (or even |X| = Ω(2
√
Td−1

)).

To resolve this limitation, we extend LinNash with a modified confidence width that depends

only on the largest estimated reward γ := maxx∈X⟨x, θ̂⟩. Specifically, we consider the confidence

61

width 16

√
γ d

5
2 ν log (T)

T′ , for all the arms, and select the set of surviving arms in each phase (of

Part II of the algorithm for infinite arms) as follows:

X̃ =

x ∈ X : ⟨x, θ̂⟩ ≥ γ − 16

√
γ d

5
2 ν log (T)

T′

 (3.14)

See Algorithm 6 for details. The theorem below is the main result of this section.

Theorem 3.2. For any given stochastic linear bandits problem with set of arms X ⊂ Rd, time

horizon T ∈ Z+, and ν-sub-Poisson rewards, Algorithm 5 achieves Nash regret

NRT = O

(
β
d

5
4
√
ν√

T
log(T)

)
,

Here, β = max {1, ⟨x∗, θ∗⟩ log d}, with x∗ ∈ X denoting the optimal arm and θ∗ the (unknown)

parameter vector.

Proof of Theorem 3.2 and a detailed regret analysis of Algorithm 6 can be found in Appendix

3.9.

3.5 Experiments

10000 15000 20000 25000 30000 35000 40000 45000 50000
Rounds

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Na
sh

 R
eg

re
t

LinNash
Thomson Sampling

Figure 3.1: figure
Nash Regret comparison of LinNash and Thompson Sampling

62

0 10000 20000 30000 40000 50000
Rounds

0.0

0.1

0.2

0.3

0.4

0.5

Ro
un

d-
wi

se
 R

ew
ar

d

LinNash

Figure 3.2: figure
Round-wise reward for LinNash

0 10000 20000 30000 40000 50000
Rounds

0.0

0.1

0.2

0.3

0.4

0.5

Ro
un

d-
wi

se
 R

ew
ar

d

Thompson Sampling

Figure 3.3: figure
Round-wise reward for Thompson Sampling

We conduct experiments to compare the performance of our algorithm LinNash with

Thompson Sampling on synthetic data. For a comparison, we select Thompson Sampling

(Algorithm 1 in [AG13]), instead of UCB/OFUL, since randomization is essential to achieve

meaningful Nash Regret guarantees.

We fine-tune the parameters of both algorithms and evaluate their performance in the

following experimental setup: We fix the ambient dimension d = 80, the number of arms

|X| = 10000, and the number of rounds T = 50000. Both the unknown parameter vector, θ∗,

and the arm embeddings are sampled from a multivariate Gaussian distribution. Subsequently,

the arm embeddings are shifted and normalized to ensure that all mean rewards are non-

negative, with the maximum reward mean being set to 0.5. Upon pulling an arm, we observe

a Bernoulli random variable with a probability corresponding to its mean reward.

In this experimental setting, we observe a significant performance advantage of LinNash

over Thompson Sampling. We plot our results in Figure 5.1, which shows that the Nash regret

of LinNash decreases notably faster than that of Thompson Sampling.

Another notable advantage of LinNash evident from the experiments is due to successive

elimination. The variance in the quality of arms pulled decreases as the number of rounds

progresses – see Figures 3.2 and 3.3. This is due to the bulk elimination of suboptimal arms at

regular intervals. In contrast, Thompson Sampling incurs a large variance in quality of arms

being pulled even after several rounds, since no arms are being eliminated at any point.

63

3.6 Proof of Lemmas 3.1 and 3.2

Lemma 3.1. Any non-negative random variable X ∈ [0,B] is B-sub-Poisson, i.e., if mean

E[X] = µ, then for all λ ∈ R, we have E[eλX] ≤ exp
(
B−1µ

(
eBλ − 1

))
.

Proof. For random variable X we have

E [exp (λX)] = E
[
exp

(
λB

X

B
+ (1− X

B
)0

)]
≤ E

[
X

B
e(λB) +

(
1− X

B

)
e0
]

(due to convexity of ex)

= 1 +
E [X]

B

(
eλB − 1

)
≤ 1 +

µ

B

(
eλB − 1

)
≤ exp

(µ
B

(
eλB − 1

))
.

Lemma 3.2. Let X be a non-negative sub-Gaussian random variable X with mean µ = E[X]

and sub-Gaussian norm σ. Then, X is also
(

σ2

µ

)
-sub-Poisson.

Proof. Since X is a σ-sub-Gaussian random variable, for any non-negative scalar s ≥ 0, we

have

E[esX] ≤ exp

(
sµ+

(sσ)2

2

)
= exp

(
µ2

σ2

(
sσ2

µ
+

1

2

(
sσ2

µ

)2
))

(3.15)

The fact that X is a positive random variable implies that the mean µ > 0. Also, the considered

scalar s ≥ 0 and, hence, the term sσ2

µ
> 0. Also, recall that ex ≥ 1+x+ x2

2
, for any non-negative

x. Using these observations and equation (3.15), we obtain

E[esX] ≤ exp

(
µ2

σ2

(
e

sσ2

µ − 1

))
(3.16)

For random variable X, inequality (3.16) ensures that the required mgf bound (equation (3.2))

holds for all non-negative s and with sub-Poisson parameter equal to σ2

µ
.

We next complete the proof by showing that the mgf bound holds for negative s as well.

Towards this, write B := σ2

µ
and define random variable Y := 1{X≤B} X + 1{X>B} B. Note

64

that Y is a positive, bounded random variable. Furthermore, for any negative s, we have

exp (sY) ≥ exp (sX). Therefore, for a negative s, it holds that E [exp(sX)] ≤ E [exp (sY)].

Since positive random variable Y ∈ [0, B], the mgf bound obtained in Lemma 3.1 gives us

E[esX] ≤ E
[
esY
]
≤ exp

(µ
B

(
esB − 1

))
.

Since B := σ2

µ
, the mgf bound (equation (3.2)) on X holds for negative s as well. This, overall,

shows that X is a
(

σ2

µ

)
-sub-Poission random variable. The lemma stands proved.

3.7 Proof of Concentration Bounds

Lemma 3.6. Let x1, x2, . . . , xs ∈ Rd be a fixed set of vectors and let r1, r2, . . . , rs be independent

ν-sub-Poisson random variables satisfying Ers = ⟨xs, θ
∗⟩ for some unknown θ∗. Further, let

matrix V =
∑s

j=1 xjx
T
j and θ̂ = V−1

(∑
j rjxj

)
be the least squares estimator of θ∗. Consider

any z ∈ Rd with the property that zTV−1xj ≤ γ for all j ∈ [s]. Then, for any δ ∈ [0, 1] we have

P
{
⟨z, θ̂⟩ ≥ (1 + δ)⟨z, θ∗⟩

}
≤ exp

(
−δ2⟨z, θ∗⟩

3νγ

)
and (3.8)

P
{
⟨z, θ̂⟩ ≤ (1− δ)⟨z, θ∗⟩

}
≤ exp

(
−δ2⟨z, θ∗⟩

2νγ

)
. (3.9)

Proof. We use the Chernoff method to get an upper bound on the desired probabilities, as

shown below

P
{
⟨z, θ̂⟩ ≥ (1 + δ)⟨z, θ∗⟩

}
= P

(
exp(c ⟨z, θ̂⟩) ≥ exp(c(1 + δ)⟨z, θ∗⟩)

)
(for some constant c)

≤
E[exp

(
c zTV−1 (

∑
t rtxt)

)
]

exp(c (1 + δ)⟨z, θ∗⟩)

=

∏s
t=1 E[exp (c rtV−1xt)]

exp(c (1 + δ)⟨z, θ∗⟩)
(rt’s are independent)

≤

∏s
t=1 exp

(
E[rt]
ν

(
ecνz

TV−1xt − 1
))

exp(c (1 + δ)⟨z, θ∗⟩)
(rt is sub Poisson)

= exp

(
−c⟨z, θ∗⟩(1 + δ) +

s∑
t=1

⟨x, θ∗⟩
ν

(
ec νzTV−1xt − 1

))
.

65

Substituting c = log(1+δ)
νγ

, we get

P
{
⟨z, θ̂⟩ ≥ (1 + δ)⟨z, θ∗⟩

}
≤ exp

(
−⟨z, θ

∗⟩
νγ

(1 + δ) log (1 + δ) +
s∑

t=1

⟨xt, θ
∗⟩

ν

(
(1 + δ)

1
γ
zTV−1xt − 1

))
.

(3.17)

Since 1
γ
zTV−1xt ≤ 1 we have (1+ δ)

1
γ
zTV−1xt ≤ 1+ δ · 1

γ
zTV−1xt. Substituting in (3.17) we get

P
{
⟨z, θ̂⟩ ≥ (1 + δ)⟨z, θ∗⟩

}
≤ exp

(
− 1

νγ
⟨z, θ∗⟩(1 + δ) log (1 + δ) +

s∑
t=1

⟨xt, θ
∗⟩ · δ

νγ
zTV−1xt

)

= exp

(
− 1

νγ
⟨z, θ∗⟩(1 + δ) log (1 + δ) +

δ

νγ

s∑
t=1

θ∗Txtx
T
t V

−1z

)
(rearranging terms)

= exp

(
− 1

νγ
⟨z, θ∗⟩(1 + δ) log (1 + δ) +

δ

νγ
⟨z, θ∗⟩

)
. (

∑s
t=1 xtx

T
t = V)

Using the logarithmic inequality log(1 + δ) ≥ 2δ
2+δ

, we further simplify as

P
{
⟨z, θ̂⟩ ≥ (1 + δ)⟨z, θ∗⟩

}
≤ exp

(
−⟨z, θ

∗⟩
νγ

((1 + δ) log (1 + δ)− δ)

)
≤ exp

(
−δ2⟨z, θ∗⟩
(2 + δ) νγ

)
≤ exp

(
−δ2⟨z, θ∗⟩

3νγ

)
. (since δ ∈ [0, 1])

Following similar steps and substituting c = log(1−δ)
νγ

, we obtain a bound on the lower tail

(inequality 3.9):

P
{
⟨z, θ̂⟩ ≤ (1− δ)⟨z, θ∗⟩

}
≤ exp

(
− 1

νγ
⟨z, θ∗⟩(1− δ) log (1− δ)− δ

νγ
⟨z, θ∗⟩

)
.

Now, using the logarithmic inequality (1− δ) log(1− δ) ≥ −δ + δ2

2
, we get

P
{
⟨z, θ̂⟩ ≤ (1− δ)⟨z, θ∗⟩

}
≤ exp

(
−δ2⟨z, θ∗⟩

2νγ

)

66

Combining (3.9) and (3.8) we get the following Corollary.

Corollary 3.1. Using the notations as in Lemma 3.6, we have

P
{
|⟨z, θ̂⟩ − ⟨z, θ∗⟩| ≥ δ⟨z, θ∗⟩

}
≤ 2 exp

(
−δ2⟨z, θ∗⟩

3γ

)
. (3.18)

The next two lemmas are variants of Lemma 3.6 where we bound the error in terms of an

upper bound on ⟨z, θ∗⟩.

Lemma 3.9. Let x1, x2, . . . , xs ∈ Rd be a fixed set of vectors and let r1, r2, . . . , rs be independent

ν−sub Poisson random variables satisfying Ers = ⟨xs, θ
∗⟩ for some unknown θ∗. In that case, let

matrix V =
∑s

j=1 xjx
T
j and θ̂ = V−1

(∑
j rjxj

)
be the least squares estimator of θ∗. Consider

any z ∈ Rd that satisfies zTV−1xj ≤ γ for all j ∈ [s] and ⟨z, θ∗⟩ ≤ α. Then for any δ ∈ [0, 1]

we have

P
{
⟨z, θ̂⟩ ≥ (1 + δ)α

}
≤ e−

δ2α
3γν . (3.19)

Proof. Following the same approach as in the proof of Lemma 3.6, we have

P
{
⟨z, θ̂⟩ ≥ (1 + δ)α

}
≤ E[exp(c zTV−1 (

∑
t rtxt))]

exp(c (1 + δ)α)

≤ exp

(
−cα(1 + δ) +

s∑
t=1

⟨xt, θ
∗⟩

ν

(
ecνz

TV−1xt − 1
))

(rt are sub-poisson and independent)

Now, substituting c = 1
νγ

log (1 + δ)) and using (1 + δ)
1
γ
zTV−1xt ≤ 1 + δ · 1

γ
zTV−1xt we have

P
{
⟨z, θ̂⟩ ≥ (1 + δ)α

}
≤ exp

(
− 1

γν
α(1 + δ) log (1 + δ) +

s∑
t=1

⟨xt, θ
∗⟩

ν
θ∗
(
(1 + δ)

1
γ
zTV−1xt − 1

))

≤ exp

(
− 1

νγ
α(1 + δ) log (1 + δ) +

δ

νγ

s∑
t=1

θ∗Txtx
T
t V

−1Z

)

= exp

(
− 1

νγ
α(1 + δ) log (1 + δ) +

δ

νγ
⟨z, θ∗⟩

)
≤ exp

(
− 1

νγ
α(1 + δ) log (1 + δ) +

δ

νγ
α

)
(α ≥ ⟨z, θ∗⟩)

≤ exp

(
−δ2α

(2 + δ) νγ

)
(using log(1 + δ) ≥ 2δ

2+δ
)

Since δ ∈ [0, 1], we have the desired result.

67

Lemma 3.10. Using the same notations as in Lemma 3.9, for any δ ∈ [0, 1], the following

holds

P
{
⟨z, θ̂⟩ ≤ ⟨z, θ∗⟩ − δα

}
≤ exp

(
− δ2α

2γν

)
(3.20)

Proof. Using steps similar to the previous lemmas, we obtain

P
{
⟨z, θ̂⟩ ≤ ⟨z, θ∗⟩ − δα

}
≤ E[exp(c zTV−1 (

∑
t rtxt))]

exp(c (⟨z, θ∗⟩ − δα))

≤ exp

(
cαδ + c⟨z, θ∗⟩+

s∑
t=1

⟨xt, θ
∗⟩

ν

(
ecνz

TV−1xt − 1
))

(rt are sub-poisson and independent)

Substituting c = log(1−δ)
νγ

and simplifing we get

P
{
⟨z, θ̂⟩ ≤ ⟨z, θ∗⟩ − δα

}
≤ exp

(
−⟨z, θ

∗⟩
νγ

(log (1− δ) + δ) +
α

νγ
δ log (1− δ)

)
Note that since log(1−δ)+δ is negative, we can upper bound the above expression by replacing

⟨z, θ∗⟩ with α.

P
{
⟨z, θ̂⟩ ≤ ⟨z, θ∗⟩ − δα

}
≤ exp

(
− α

νγ
(log (1− δ) + δ − δ log (1− δ))

)
≤ exp

(
− δ2α

2νγ

)
. (since (1− δ) log(1− δ) ≥ −δ + δ2

2
)

Hence, the lemma stands proved.

3.8 Regret Analysis of Algorithm 5: Proofs of Lemmas

3.7 and 3.8

We will first define events E1 and E2 for each phase of the algorithm and show that they hold

with high probability. We will use the events in the regret analysis.

• Event E1: At the end of Part I, let θ̂ be the unbiased estimator of θ∗ and T̃ be as defined

in Algorithm 5. All arms x ∈ X with ⟨x, θ∗⟩ < 10
√

dν log (T|X|)
T

satisfy

⟨x, θ̂⟩ ≤ 20

√
dν log (T|X|)

T
(3.21)

68

In addition, all arms x ∈ X with ⟨x, θ∗⟩ ≥ 10
√

dν log (T|X|)
T

satisfy

|⟨x, θ∗⟩ − ⟨x, θ̂⟩| ≤ 3

√
dν⟨x, θ∗⟩ log (T|X|)

T̃
and (3.22)

1

2
⟨x, θ∗⟩ ≤⟨x, θ̂⟩ ≤ 4

3
⟨x, θ∗⟩. (3.23)

• Event E2: Let X̃ denote the surviving set of arms at the start of a phase in Part II, and

T′ be as defined in Algorithm 5. For all phases and for all x ∈ X̃ such that ⟨x, θ∗⟩ ≥
10
√

dν log (T|X|)
T

, the estimator θ̂ (calculated at the end of a phase) satisfies

|⟨x, θ∗⟩ − ⟨x, θ̂⟩| ≤ 3

√
dν⟨x, θ∗⟩ log (T|X|)

T′ and (3.24)

1

2
⟨x, θ∗⟩ ≤⟨x, θ̂⟩ ≤ 4

3
⟨x, θ∗⟩. (3.25)

3.8.1 Supporting Lemmas

Lemma 3.11 (Chernoff Bound). Let Z1, . . . , Zn be independent Bernoulli random variables.

Consider the sum S =
∑n

r=1 Zr and let µ = E[S] be its expected value. Then, for any ε ∈ [0, 1],

we have

P {S ≤ (1− ε)µ} ≤ exp

(
−µε2

2

)
.

Lemma 3.12. During Part I, arms from D-optimal design are added to S at least T̃/3 times

with probability greater than 1− 1
T
.

Proof. We use Lemma 3.11 with Zi as indicator random variables that take value one when an

arm from A (the support of λ in the optimal design) is chosen. By setting ε = 1
3
and µ = T̃

2
,

we obtain the required probability bound.

Lemma 3.13. Using the notations in Algorithm 4, if the event in Lemma 3.12 holds, then for

each x ∈ X and each round t in Part I of the algorithm, we have

xTV−1Xt ≤
3d

T̃
,

where Xt is the arm pulled in round t.

69

Proof. Let U(λ) and λ denote the optimal design matrix (as defined in (3.4)) and the solution

to the D-optimal design problem in Algorithm 4, respectively. That is, λ is the solution of the

optimization problem stated in equation (3.5) and U(λ) =
∑

x∈X λxxx
T . Lemma 3.3 implies

that ||x||U(λ)−1 ≤
√
d for all x ∈ X.

Next, note that the construction of the sequence S in Part I (Subroutine GenerateArmSequence)

and the event specified in Lemma 3.12 give us V ≻ T̃
3
U(λ). Hence,

xTV−1Xt ≤ ∥x∥V−1

∥∥V−1Xt

∥∥
V

(via Hölder’s inequality)

= ∥x∥V−1 ∥Xt∥V−1

≤ ∥x∥(
T̃
3
U(λ)

)−1 ∥Xt∥(T̃
3
U(λ)

)−1 (since V ≻ T̃
3
U(λ))

=

√
3

T̃
∥x∥U(λ)−1

√
3

T̃
∥Xt∥U(λ)−1

≤

√
3d

T̃

√
3d

T̃
(by Lemma 3.3)

=
3d

T̃
.

The next lemma lower bounds the probability of event E1 (see equations (3.21), (3.22), and

(3.23)).

Lemma 3.14. Event E1 holds with probability at least 1− 6
T
.

Proof. First, consider all arms x ∈ X for which ⟨x, θ∗⟩ < 10
√

dν log (T|X|)
T

. Here, we invoke

Lemma 3.9, with γ = 3d

T̃
(as derived in Lemma 3.13), α = 10

√
dν log (T|X|)

T
, and δ = 1, to obtain

P

{
⟨x, θ̂⟩ ≤ 20

√
dν log (T|X|)

T

}
≤ exp

(
− δ2α

3γν

)

≤ exp

−10
√

dν log (T|X|)
T

3
√

Tdν log(T|X|)
3νd


≤ 1

T|X|
(3.26)

Next, we consider arms x ∈ X such that ⟨x, θ∗⟩ ≥ 10
√

dν log (T|X|)
T

and for such arms establish

equations (3.22) and (3.23). Towards this, we invoke Lemma 3.6, with parameters γ = 3d

T̃
and

70

δ = 3
√

dν log (T|X|)
⟨x,θ∗⟩T̃

. It is relevant to note that here δ ∈ [0, 1] – this containment follows from the

condition ⟨x, θ∗⟩ ≥ 10
√

dν log (T|X|)
T

and T̃ = 3
√

Tdν log(T|X|). Therefore,

P

{
|⟨x, θ∗⟩ − ⟨x, θ̂⟩| ≥ 3

√
dν⟨x, θ∗⟩ log (T|X|)

T̃

}
= P

{
|⟨x, θ∗⟩ − ⟨x, θ̂⟩| ≥ δ⟨x, θ∗⟩

}
(since δ = 3

√
dν log (T|X|)

⟨x,θ∗⟩T̃
)

≤ 2 exp

− 9dν log (T|X|)
⟨x,θ∗⟩T̃

⟨x, θ∗⟩

3ν 3d

T̃

 (Lemma 3.6)

=
2

T|X|
(3.27)

For establishing equation (3.23), we invoke Lemma 3.6 again, now with γ = 3d

T̃
and δ = 1

3
:

P
{
⟨x, θ̂⟩ ≥ 4

3
⟨x, θ∗⟩

}
≤ exp

(
−
3
√

Tνd log(T|X|) ⟨x, θ∗⟩
27νd

)

≤ exp

−3
√

Tνd log(T|X|) 10
√

dν log (T|X|)
T

27νd


≤ 1

T|X|
(3.28)

Similarly, with δ = 1
2
, Lemma 3.6 gives us

P
{
⟨x, θ̂⟩ ≤ 1

2
⟨x, θ∗⟩

}
≤ 1

T|X|
(3.29)

Finally, we combine (3.26), (3.27), (3.28) and (3.29), and apply a union bound over all arms in

X. Then, conditioning on the event in Lemma 3.12 leads to the stated probability bound. The

lemma stands proved.

The next lemma shows that event E2 (see equations (3.24) and (3.25)) holds with high

probability

Lemma 3.15. Event E2 holds with probability at least 1− 3 logT
T

.

Proof. Consider any phase in Part II and let U(λ) be the optimal design matrix obtained after

solving the D-optimal design problem at the start of the phase. By Lemma 3.3, for all x, z ∈ X̃

71

we have

zTV−1x ≤ ∥z∥V−1

∥∥V−1x
∥∥
V

(via Hölder’s inequality)

≤ ∥z∥V−1 ∥x∥V−1

≤
√

d

T′

√
d

T′ =
d

T′

First, we address equation (3.24). In particular, we instantiate Lemma 3.6 with δ =

3
√

dν log (T|X|)
⟨x,θ∗⟩T′ and γ = d

T′ . Note that given the lower bound on ⟨x, θ∗⟩ and the inequality

T′ ≥ 2
√

Tdν log(T|X|) ensure that δ lies in [0, 1]. Hence, substituting these values of δ and γ

in Lemma 3.6, we obtain

P

{
|⟨x, θ∗⟩ − ⟨x, θ̂⟩| ≥ 3

√
dν⟨x, θ∗⟩ log (T|X|)

T′

}
≤ 2 exp

(
−

9dν log (T|X|)
⟨x,θ∗⟩T′ · ⟨x, θ∗⟩

3dν
T′

)
≤ 2

(T|X|)3

Next, following a similar approach as in the proof of Lemma 3.14, we use Lemma 3.6 with δ = 1
3

and δ = 1
2
to establish the upper and lower bounds of equation (3.25), respectively. Applying

a union bound across arms in X̃ and over all—at most logT—phases, we obtain the desired

probability bound of 1− 3 logT
T

.

Corollary 3.2.

P {E1 ∩ E2} ≥ 1− 4 logT

T
.

Proof. From Lemma 3.14 we have P {E1} ≥ 1 − 6
T
. Furthermore, from Lemma 3.15 we have

P {E2} ≥ 1− 3 logT
T

. Applying a union bound on the complements of these two events establishes

the corollary.

Lemma 3.16. Consider any bandit instance with ⟨x∗, θ∗⟩ ≥ 192
√

dν log (T|X|)
T

. If event E1 holds,

then any arm with mean ⟨x, θ∗⟩ ≤ 10
√

dν log(T|X|)
T

is eliminated after Part I of Algorithm 5.

Proof. We will show that in the given bandit instance and under the event E1, for each arm

x ∈ X with mean ⟨x, θ∗⟩ ≤ 10
√

dν log(T|X|)
T

the upper Nash confidence bound (see equation (3.7))

is less than the lower confidence bound of the optimal arm x∗. Hence, all such arms x are

eliminated from consideration in Line 8 of Algorithm 5. This will establish the lemma.

72

The upper Nash confidence bound of arm x at the end of Part I is defined as

UNCB
(
x, θ̂, T̃/3

)
= ⟨x, θ̂⟩+ 6

√
3⟨x, θ̂⟩ d ν log (T|X|)

T̃

≤ 20

√
d ν log(T|X|)

T
+ 6

√
3⟨x, θ̂⟩ d ν log (T|X|)

T̃
(via event E1)

≤ 20

√
dν log(T|X|)

T
+ 6

√√√√3 · 20
√

dν log(T|X|)
T

dν log (T|X|)

3
√

Tνd log(T|X|)
(substituting T̃)

≤ 47

√
dν log(T|X|)

T
(3.30)

In the given bandit instance and under event E1, for the optimal arm x∗, we have

⟨x∗, θ̂⟩ ≤ ⟨x∗, θ∗⟩+ 3

√
dν⟨x∗, θ∗⟩ log (T|X|)

T̃

= ⟨x∗, θ∗⟩

(
1 + 3

√
dν log (T|X|)

⟨x∗, θ∗⟩3
√

Td ν log(T|X|)

)
(substituting T̃)

≤ ⟨x∗, θ∗⟩

1 + 3

√√√√ dν log (T|X|)

192
√

dν log(T|X|)
T

3
√

Tνd log(T|X|)


(using ⟨x∗, θ∗⟩ ≥ 192

√
dν log (T|X|)

T
)

=
17

16
⟨x∗, θ∗⟩. (3.31)

Therefore, the lower Nash confidence bound of x∗ satisfies

LNCB
(
x∗, θ̂, T̃/3

)
= ⟨x∗, θ̂⟩ − 6

√
3⟨x∗, θ̂⟩ d ν log (T|X|)

T̃

≥ ⟨x∗, θ∗⟩ − 3

√
d ν ⟨x∗, θ∗⟩ log (T|X|)

T̃
− 6

√
3⟨x∗, θ̂⟩ d ν log (T|X|)

T̃

(via (3.22) in event E1)

≥ ⟨x∗, θ∗⟩ −

(
3 + 6

√
51

16

)√
d ν ⟨x∗, θ∗⟩ log (T|X|)

T̃

(since ⟨x∗, θ̂⟩ ≤ 17
16
⟨x∗, θ∗⟩ via (3.31))

73

≥ ⟨x∗, θ∗⟩

(
1− 14

√
dν log (T|X|)
⟨x∗, θ∗⟩T̃

)

≥ ⟨x∗, θ∗⟩

1− 14

√√√√ dν log (T|X|)

192
√

dν log(T|X|)
T

3
√

Tdν log(T|X|)


≥ 5

12
⟨x∗, θ∗⟩

≥ 80

√
dν log(T|X|)

T
(3.32)

Equations (3.32) and (3.30) imply

UNCB
(
x, θ̂, T̃/3

)
< LNCB

(
x∗, θ̂, T̃/3

)
(3.33)

As mentioned previously, Line 8 in Algorithm 5 eliminates all arms x that satisfy inequality

(3.33). Hence, the lemma stands proved

3.8.2 Proofs of Lemmas 3.7 and 3.8

Lemma 3.7. Consider any bandit instance in which for the optimal arm x∗ ∈ X we have

⟨x∗, θ∗⟩ ≥ 192
√

d ν
T

log(T|X|). Then, with probability at least
(
1− 4 logT

T

)
, the optimal arm x∗

always exists in the surviving set X̃ in Part I and in every phase in Part II of Algorithm 5.

Proof. We will show that, under events E1 and E2, throughout the execution of Algorithm 5

the UNCB of the optimal arm x∗ is never less than the LNCB of any arm x. Hence, then the

optimal arm x∗ never satisfies the elimination criterion in Algorithm 5 and, hence, x∗ always

exists in the surviving set of arms.

First, we consider arms x with the property that ⟨x, θ∗⟩ < 10
√

dν log (T|X|)
T

. For any such arm

x, at the end of Part I of the algorithm we have

LNCB
(
x, θ̂, T̃/3

)
≤ UNCB

(
x, θ̂, T̃/3

)
<

via (3.33)
LNCB

(
x∗, θ̂, T̃/3

)
≤ UNCB

(
x∗, θ̂, T̃/3

)
.

Hence, at the end of Part I, arm x∗ is not eliminated via the LNCB of any x which satisfies

⟨x, θ∗⟩ < 10
√

dν log (T|X|)
T

. Further, note that, under event E1, such arms are eliminated at the

end of Part I (Lemma 3.16). Hence, the LNCB of such arms are not even considered in the

phases of Part II.

To complete the proof, we next show that the UNCB of the optimal arm x∗ is at least the

LNCB of all arms x which bear ⟨x, θ∗⟩ ≥ 10
√

dν log (T|X|)
T

. Below, we will consider the Nash

74

confidence bounds for a general T′. Replacing T′ by T̃ gives us the desired confidence-bounds

comparison for the end of Part I – this repetition is omitted.

Under events E1 and E2, for any arm x with ⟨x, θ∗⟩ ≥ 10
√

dν log (T|X|)
T

, it holds that

LNCB(x, θ̂,T′) = ⟨x, θ̂⟩ − 6

√
⟨x, θ̂⟩ d ν log (T|X|)

T′

≤ ⟨x, θ∗⟩+ 3

√
d ν ⟨x, θ∗⟩ log (T|X|)

T′ − 6

√
⟨x, θ̂⟩ dν log (T|X|)

T′ (via (3.24))

≤ ⟨x, θ∗⟩ −
(

6√
2
− 3

)√
dν⟨x, θ∗⟩ log (T|X|)

T′ (⟨x, θ̂⟩ ≥ 1
2
⟨x, θ∗⟩ via (3.25))

≤ ⟨x, θ∗⟩. (3.34)

Complementarily, for optimal arm x∗ we have

UNCB(x∗, θ̂,T′) = ⟨x∗, θ̂⟩+ 6

√
⟨x∗, θ̂⟩ d ν log (T|X|)

T′

≥ ⟨x∗, θ∗⟩ − 3

√
dν⟨x∗, θ∗⟩ log (T|X|)

T′ + 6

√
⟨x∗, θ̂⟩ d ν log (T|X|)

T′

≥ ⟨x∗, θ∗⟩+
(

6√
2
− 3

)√
dν ⟨x∗, θ∗⟩ log (T|X|)

T′ (since ⟨x∗, θ̂⟩ ≥ ⟨x∗,θ∗⟩
2

)

≥ ⟨x∗, θ∗⟩ (3.35)

Since ⟨x∗, θ∗⟩ ≥ ⟨x, θ∗⟩ for all arms x, inequalities (3.34) and (3.35) lead to the confidence-

bounds comparison:

UNCB(x∗, θ̂,T′) ≥ LNCB(x, θ̂,T′).

Hence, if events E1 and E2 hold, then the optimal arm x∗ is never eliminated from Algorithm

5. Further, Corollary 3.2 ensures that the events E1 and E2 hold with probability at least

1− 4 logT
T

. Hence, the lemma stands proved.

Lemma 3.8. Consider any phase ℓ in Part II of Algorithm 5 and let X̃ be the surviving set of

arms at the beginning of that phase. Then, with T̃ =
√
dνT log(T |X|), we have

Pr

{
⟨x, θ∗⟩ ≥ ⟨x∗, θ∗⟩ − 25

√
3dν⟨x∗, θ∗⟩ log (T|X|)

2ℓ · T̃
for all x ∈ X̃

}
≥ 1− 4 logT

T
(3.10)

75

Here, ν is the sub-Poisson parameter of the stochastic rewards.

Proof. For the analysis, assume that events E1 and E2 hold. Lemma 3.7 ensures that the optimal

arm is contained in the surviving set of arms X̃. Furthermore, if an arm x ∈ X̃ at the beginning

of the ℓth phase, then it must be the case that arm x was not eliminated in the previous phase

(which executed for T′/2 rounds); in particular, we have UNCB(x, θ̂,T′/2) ≥ LNCB(x∗, θ̂,T′/2).

This inequality reduces to

⟨x, θ̂⟩+ 6

√
⟨x, θ̂⟩ d ν log (T|X|)

T′

2

≥ ⟨x∗, θ̂⟩ − 6

√
⟨x∗, θ̂⟩ d ν log (T|X|)

T′

2

.

Rearranging the terms, we obtain

⟨x, θ̂⟩ ≥ ⟨x∗, θ̂⟩ − 6

√
⟨x∗, θ̂⟩ d ν log (T|X|)

T′

2

− 6

√
⟨x, θ̂⟩ d ν log (T|X|)

T′

2

≥ ⟨x∗, θ̂⟩ − 6

√
4⟨x∗, θ∗⟩ d ν log (T|X|)

3T′/2
− 6

√
4⟨x, θ∗⟩ d ν log (T|X|)

3T′/2

(⟨x, θ̂⟩ ≤ 4
3
⟨x, θ∗⟩ via (3.25))

≥ ⟨x∗, θ̂⟩ − 20

√
⟨x∗, θ∗⟩ d ν log (T|X|)

T′ .

Further, invoking equation (3.24) for x∗ leads to

⟨x, θ∗⟩ ≥ ⟨x∗, θ∗⟩ − 20

√
⟨x∗, θ∗⟩ d ν log (T|X|)

T′ − 3

√
⟨x∗, θ∗⟩ d ν log (T|X|)

T′

2

≥ ⟨x∗, θ∗⟩ − 25

√
⟨x∗, θ∗⟩ d ν log (T|X|)

T′ .

Substituting T′ = 2ℓT̃/3, the above inequality reduces to the desired bound in (3.10). From

Corollary 3.2, we have that the events E1 and E2 hold with probability at least 1 − 4 logT
T

.

Hence, the lemma stands proved.

3.9 Regret Analysis of Algorithm 6

Instead of ensuring probability bounds on individual arms, we construct a confidence ellipsoid

around θ∗. In the context of Algorithm 6, we define the following events for the regret analysis:

G1 In Part I, arms from the D-optimal design are chosen at least T̃/3 times. If ⟨x∗, θ∗⟩ ≥

76

196
√

d2.5ν
T

logT, then θ̂ calculated at the end of Part I satisfies

∥∥∥θ̂ − θ∗
∥∥∥
V
≤ 7

√
⟨x∗, θ∗⟩d 3

2ν logT.

G2 In Part II, for every phase, if ⟨x∗, θ∗⟩ ≥ 196
√

d2.5ν
T

logT, the estimators θ̂ satisfy:

∥∥∥θ̂ − θ∗
∥∥∥
V
≤ 7

√
⟨x∗, θ∗⟩d 3

2ν logT.

Without loss of generality, we assume throughout that ⟨x∗, θ∗⟩ ≥ 196d1.25
√
ν√

T
logT. Otherwise,

the regret bound in Theorem 3.2 trivially holds. Let B denote the unit ball in Rd. We have∥∥∥θ̂ − θ∗
∥∥∥
V
=
∥∥∥V 1

2 (θ̂ − θ∗)
∥∥∥
2

= max
y∈B
⟨y,V

1
2 (θ̂ − θ∗)⟩.

We construct an ε-net for the unit ball, denoted as Cε. For any y ∈ B, we define yε :=

argminb∈Cε
∥b− y∥2. We can now write∥∥∥θ̂ − θ∗

∥∥∥
V
= max

y∈B
⟨y − yε,V

1
2 (θ̂ − θ∗)⟩+ ⟨yε,V

1
2 (θ̂ − θ∗)⟩

≤ max
y∈B
∥y − yε∥2

∥∥∥V 1
2 (θ̂ − θ∗)

∥∥∥
2
+ |⟨yε,V

1
2 (θ̂ − θ∗)⟩|

≤ ε
∥∥∥(θ̂ − θ∗)

∥∥∥
V
+ |⟨yε,V

1
2 (θ̂ − θ∗)⟩|.

Rearranging, we obtain ∥∥∥θ̂ − θ∗
∥∥∥
V
≤ 1

1− ε
|⟨yεV

1
2 , θ̂ − θ∗⟩|. (3.36)

In the following lemmas, we show that |⟨yεV
1
2 , θ̂ − θ∗⟩| is small for all values of yε.

Lemma 3.17. Let x1, x2, . . . , xn be a sequence of fixed arm pulls (from a set X) such that

each arm x in the support λ from D-optimal design (for X) is pulled at least ⌈λxτ⌉ times.

Consider the matrix V =
∑n

j=1 xjx
T
j and let z be a vector such that ∥z∥2 ≤ 1 and ⟨zV 1

2 , θ∗⟩ ≥

77

6ν
√

d
τ

log (T|Cε|). Then, with probability greater than 1− 2
T|Cε| , we have,

|⟨zV
1
2 , θ∗ − θ̂⟩| ≤

(
3ν

√
nd

τ
log (T|Cε|)⟨x∗, θ∗⟩

) 1
2

Proof. We begin by utilizing Lemma 3.6. First, we determine the γ parameter in the lemma as

follows, for any t ∈ [n] we have(
zV

1
2

)T
V−1xt ≤

∥∥∥zV 1
2

∥∥∥
V−1

∥∥V−1xt

∥∥
V

≤ ∥z∥2 ∥xt∥V−1

≤ ∥xt∥V−1 . (since ∥z∥2 ≤ 1)

Let Aλ be the optimal design matrix. Since V ≻ τAλ, we have

∥xt∥V−1 ≤ ∥xt∥ 1
τ
A−1

λ

≤
√

d

τ
. (by Lemma 3.3)

Now, we use Corollary 3.1 with γ =
√

d
τ
and δ =

(
3
√

d
τ
ν log (T|Cε|)
⟨zV

1
2 ,θ∗⟩

) 1
2

. Note that δ ∈ [0, 1] since

⟨zV 1
2 , θ∗⟩ ≥ 6

√
d
τ
ν log (T|Cε|). We obtain the following probability bound

P

|⟨zV 1
2 , θ∗ − θ̂⟩| ≥

(
3ν

√
d

τ
log (T|Cε|)⟨zV

1
2 , θ∗⟩

) 1
2

 ≤ 2 exp

−3
√

d
τ
ν log (T|Cε|)
⟨zV

1
2 ,θ∗⟩

⟨zV 1
2 , θ∗⟩

3ν
√

d
τ


≤ 2

T|Cε|
. (3.37)

Finally, we establish an upper bound on the term ⟨zV 1
2 , θ∗⟩ as follows

⟨zV
1
2 , θ∗⟩ ≤ ∥z∥2

∥∥∥V 1
2 θ∗
∥∥∥
2

≤
√
θ∗TVθ∗ (since ∥z∥2 ≤ 1)

=

√√√√√
∑

i∈[n]

θ∗TxixT
i θ

∗



78

=
√
n⟨x∗, θ∗⟩. (⟨xi, θ

∗⟩ ≤ ⟨x∗, θ∗⟩)

Substituting in (3.37) we get the lemma statement. This completes the proof of the lemma.

Lemma 3.18. Consider the same notation as in Lemma 3.17. If ⟨zV 1
2 , θ∗⟩ ∈

[
0, 6ν

√
d
τ

log (T|Cε|)
]
,

then with probability greater than 1− 2
T|X| we have

|⟨zV
1
2 , θ∗ − θ̂⟩| ≤ 12ν

√
d

τ
log (T|Cε|).

Proof. Utilizing Lemma 3.9, with δ = 1, α = 6ν
√

d
τ

log (T|Cε|), and γ =
√

d
τ
, we have

⟨zV 1
2 , θ̂⟩ ≤ 12ν

√
d
τ
log (T|Cε|). Since ⟨zV 1

2 , θ∗⟩ ≥ 0, it follows, with probability greater than

1− 1
T|X| , that

⟨zV
1
2 , θ̂ − θ∗⟩ ≤ 12ν

√
d

τ
log (T|Cε|).

Next, applying Lemma 3.10 with δ = 1 and α = 6ν
√

d
τ
log (T|Cε|), we have, with probability

greater than 1− 1
T|X| ,

⟨zV
1
2 , θ∗ − θ̂⟩ ≤ 6ν

√
d

τ
log (T|Cε|) ≤ 12ν

√
d

τ
log (T|Cε|).

Hence, the lemma stands proved.

Lemma 3.19. If ⟨x∗, θ∗⟩ ≥ 196
√

d2.5ν
T

logT, then

P {G1} ≥ 1− 3

T
(3.38)

Proof. First, we note (from Lemma 3.12) that arms from the solution of the D-optimal design

problem are selected (with probability greater than 1 − 1
T
) at least T̃/3 times. Hence, we can

use Lemmas 3.17 and 3.18 with τ = T̃/3.

Let us consider the case where ⟨yεV
1
2 , θ∗⟩ ≥ 6

√
3d

T̃
log (T|Cε|). We have that the following

holds with probability greater than 1− 1
T|Cε| :∥∥∥θ̂ − θ∗

∥∥∥
V
≤ 1

1− ε
⟨yεV

1
2 , θ̂ − θ∗⟩ (from (3.36))

≤ 1

1− ε

3ν

√√√√T̃d
T̃
3

log (T|Cε|)⟨x∗, θ∗⟩


1
2

(using Lemma 3.17)

79

≤ 1

1− ε

(
3
√
3d ν log (T|Cε|)⟨x∗, θ∗⟩

) 1
2
.

Next, we note that |Cε| ≤
(
3
ε

)d
[LS20], and by choosing ε = 1/2 we get

∥∥∥θ̂ − θ∗
∥∥∥
V
≤ 7

(
νd

3
2 log (T)⟨x∗, θ∗⟩

) 1
2

Taking a union bound over all elements in Cε gives a probability bound of 1− 1
T
.

Now, for the case where ⟨yεV
1
2 , θ∗⟩ ∈

[
0, 6
√

3d

T̃
log (T|Cε|)

]
, substituting τ = T̃/3 in Lemma

3.18 we have, with probability greater than 1− 1
T|Cε| ,∥∥∥θ̂ − θ∗

∥∥∥
V
≤ 1

1− ε
⟨yεV

1
2 , θ̂ − θ∗⟩

≤ 12ν

1− ε

√
d

τ
log (T|Cε|) (using Lemma 3.18)

≤ 24ν

√
3d3

T̃
log (T) (substituting ε = 0.5)

≤ 7
(
d

3
2ν log (T)⟨x∗, θ∗⟩

) 1
2

The last inequality is due to the fact that ⟨x∗, θ∗⟩ ≥ 196
√

d2.5ν
T

logT and T̃ = 3
√

Tνd2.5 logT.

We again take a union bound over all elements in Cε to get a probability bound of 1− 1
T
.

Finally, a union bound over the two cases and the event in Lemma 3.12 proves the lemma.

Lemma 3.20. If ⟨x∗, θ∗⟩ ≥ 196
√

d2.5ν
T

logT, then

P {G2} ≥ 1− logT

T
. (3.39)

Proof. To prove Lemma 3.20, we follow the same steps as in the proof of Lemma 3.19. Utilizing

Lemma 3.17 and Lemma 3.18 with τ = T′, we establish that for any fixed phase, the following

inequality holds with probability greater than 1− 1
T
:

∥∥∥θ̂ − θ∗
∥∥∥
V
≤ 7

(
d

3
2ν logT⟨x∗, θ∗⟩

) 1
2
.

Taking a union bound over all – at most logT – phases in Part II of Algorithm 6 gives us the

desired lower bound on P {G2}.

80

Corollary 3.3. If G1 holds, then for all x ∈ X, θ̂ calculated at the end of Part I satisfies

|⟨x, θ̂⟩ − ⟨x, θ∗⟩| ≤ 7

√
3⟨x∗, θ∗⟩d2.5ν logT

T̃

Consider any phase ℓ in Part II. If G2 holds, then for every arm in the surviving arm set X̃ ,

θ̂ calculated at the end of the phase satisfies

|⟨x, θ̂⟩ − ⟨x, θ∗⟩| ≤ 7

√
3⟨x∗, θ∗⟩d2.5ν logT

2ℓ T̃
.

Proof. First we use Hölder’s inequality

|⟨x, θ∗ − θ̂⟩| ≤ ∥x∥V−1

∥∥∥θ∗ − θ̂
∥∥∥
V
. (3.40)

Since G1 holds, arms from the optimal design matrix are selected at least T̃/3 times; we have

by Lemma 3.3

∥x∥V−1 ≤

√
3d

T̃
.

Similarly, for every phase in Part II with T′ = 2ℓT̃/3 we have

∥x∥V−1 ≤
√

d

T′ .

Finally, using bounds on
∥∥∥θ∗ − θ̂

∥∥∥
V
from events G1 and G2, and substituting in (3.40), we get

the desired bound.

Corollary 3.4. If ⟨x∗, θ∗⟩ ≥ 196
√

d2.5ν
T

logT

7

10
⟨x∗, θ∗⟩ ≤ max

x∈X
⟨x, θ̂⟩ ≤ 13

10
⟨x∗, θ∗⟩

Proof. Since T′ ≥ 2T̃/3, via Corollary 3.3 any θ̂ calculated in Part I or during any phase of

Part II satisfies

|⟨x, θ̂⟩ − ⟨x, θ∗⟩| ≤ 7

√
3⟨x∗, θ∗⟩d2.5ν logT

T̃

81

We have

max
x∈X
⟨x, θ̂⟩ ≥ ⟨x∗, θ̂⟩

≥ ⟨x∗, θ∗⟩ − 7

√
⟨x∗, θ∗⟩d2.5ν logT

T̃

≥ ⟨x∗, θ∗⟩

(
1− 7

√
d2.5ν logT

⟨x∗, θ∗⟩T̃

)
≥ 7

10
⟨x∗, θ∗⟩ (since ⟨x∗, θ∗⟩ ≥ 196

√
d2.5ν
T

logT and T̃ = 3
√
Td2.5ν log(T))

Now, for any x ∈ X,

⟨x, θ̂⟩ ≤ ⟨x, θ∗⟩+ 7

√
⟨x∗, θ∗⟩d2.5ν logT

τ

≤ ⟨x∗, θ∗⟩

(
1 + 7

√
d2.5ν logT

⟨x∗, θ∗⟩τ

)
≤ 13

10
⟨x∗, θ∗⟩

Hence, the lemma stands proved.

Lemma 3.21. If events G1 and G2 hold then the optimal arm x∗ always exists in the surviving

set X̃ in every phase in Part II of Algorithm 6

Proof. Let τ = T̃/3 for Part I and τ = T′ for every phase of Part II. From Corollary 3.3 we

have

⟨x∗, θ̂⟩ ≥ ⟨x∗, θ∗⟩ − 7

√
⟨x∗, θ∗⟩d2.5ν logT

τ

≥ ⟨x, θ∗⟩ − 7

√
⟨x∗, θ∗⟩d2.5ν logT

τ
(since ⟨x∗, θ∗⟩ ≥ ⟨x, θ∗⟩)

≥ ⟨x, θ̂⟩ − 14

√
⟨x∗, θ∗⟩d2.5ν logT

τ
(using Corollary 3.3)

≥ ⟨x, θ̂⟩ − 16

√
maxx∈X̃⟨x, θ∗⟩d2.5ν logT

τ
. (using Corollary 3.4)

Hence, the best arm will never satisfy the elimination criteria in Algorithm 6.

Lemma 3.22. Given that events G1 and G2 hold, consider any phase index ℓ in Part II of Alg.

6. For the surviving set of arms X̃ at the beginning of that phase, and for T̃ =
√

d2.5νT log(T),

82

the following inequality holds for all x ∈ X̃

⟨x, θ∗⟩ ≥ ⟨x∗, θ∗⟩ − 26

√
3d2.5ν⟨x∗, θ∗⟩

2ℓ · T̃
. (3.41)

Proof. Lemma 3.21 ensures that the optimal arm is contained in the surviving set of arms X̃.

Furthermore, if an arm x ∈ X̃ is pulled in the ℓth phase, then it must be the case that arm x

was not eliminated in the previous phase (with a phase length parameter T′

2
); in particular the

arms x does not satisfy the inequality on Line 21 of Algorithm 6. This inequality reduces to

⟨x, θ̂⟩ ≥ ⟨x∗, θ̂⟩ − 16

√√√√ maxx∈X̃⟨x, θ̂⟩ d2.5 ν log (T)
T′

2

≥ ⟨x∗, θ̂⟩ − 26

√
⟨x∗, θ∗⟩ d2.5 ν log (T)

T′

(via Corollary 3.4)

Substituting T′ = 2lT̃/3 in the above inequality proves the Lemma.

Theorem 3.2. For any given stochastic linear bandits problem with set of arms X ⊂ Rd, time

horizon T ∈ Z+, and ν-sub-Poisson rewards, Algorithm 5 achieves Nash regret

NRT = O

(
β
d

5
4
√
ν√

T
log(T)

)
,

Here, β = max {1, ⟨x∗, θ∗⟩ log d}, with x∗ ∈ X denoting the optimal arm and θ∗ the (unknown)

parameter vector.

Proof. Without loss of generality, we assume that ⟨x∗, θ∗⟩ ≥ 196
√

d2.5ν
T

logT. Otherwise, the

Nash Regret bound is trivially true. For Part I, the product of expected rewards satisfies

T̃∏
t=1

E[⟨Xt, θ
∗⟩ | G1 ∩G2]

1
T ≥

(
⟨x∗, θ∗⟩
2(d+ 1)

) T̃
T

(From Lemma 3.5)

= ⟨x∗, θ∗⟩
T̃
T

(
1− 1

2

) log(2(d+1))T̃
T

≥ ⟨x∗, θ∗⟩
T̃
T

(
1− log(2(d+ 1))T̃

T

)
.

83

For Part II, we use Lemma 3.8. Let Ei denote the time interval of the ith phase, and let T′
i

be the phase length parameter in that phase. Recall that |Ei| ≤ T′
i+

d(d+1)
2

. Also, the algorithm

runs for at most logT phases. Hence, we have

T∏
t=T̃+1

E[⟨Xt, θ
∗⟩ | G1 ∩G2]

1
T =

∏
Ej

∏
t∈Ej

E[⟨Xt, θ
∗⟩ | G1 ∩G2]

1
T

≥
∏
Ej

(
⟨x∗, θ∗⟩ − 26

√
d2.5 ν ⟨x∗, θ∗⟩ log (T)

T′
j

) |Ej |
T

≥ ⟨x∗, θ∗⟩
T−T̃
T

logT∏
i=1

(
1− 26

√
d2.5 ν log (T)

⟨x∗, θ∗⟩T′
j

) |Ej |
T

≥ ⟨x∗, θ∗⟩
T−T̃
T

logT∏
i=1

(
1− 52

|Ej|
T

√
d2.5 ν log (T)

⟨x∗, θ∗⟩T′
j

)

The last inequality is due to the fact that (1−x)r ≥ (1−2rx) where r ∈ [0, 1] and x ∈ [0, 1/2].

Note that the term
√

d2.5ν log (T)
⟨x∗,θ∗⟩T′

j
≤ 1/2 for ⟨x∗, θ∗⟩ ≥ 196

√
d2.5ν
T

logT, T′ ≥ 2
√
Td2.5ν logT, and

T ≥ e6. We can further simplify the expression as follows

logT∏
j=1

(
1− 52

|Ej|
T

√
d2.5 ν log (T)

⟨x∗, θ∗⟩T′
j

)
≥

logT∏
j=1

(
1− 52

T′
j +

d(d+1)
2

T

√
d2.5 ν log (T)

⟨x∗, θ∗⟩T′
j

)

≥
logT∏
j=1

(
1− 78

√
T′

j

T

√
d2.5 ν log (T)

⟨x∗, θ∗⟩

)
(assuming T′

j ≥ d(d+ 1))

≥ 1− 78
1

T

√
d2.5 ν log (T)

⟨x∗, θ∗⟩

(
logT∑
j=1

√
T′

j

)

≥ 1− 78
1

T

√
d2.5 ν log (T)

⟨x∗, θ∗⟩

(√
T logT

)
(using Cauchy Schwarz)

≥ 1− 78

√
d2.5ν

T⟨x∗, θ∗⟩
log (T).

Combining the lower bound for rewards in Part I and Part II of the algorithm, we obtain

84

T∏
t=1

E[⟨Xt, θ
∗⟩]

1
T ≥

T∏
t=1

(
E[⟨Xt, θ

∗⟩ | G1 ∩G2] · P{G1 ∩G2}
) 1

T

≥ ⟨x∗, θ∗⟩

(
1− log(2(d+ 1))T̃

T

)(
1− 78

√
d2.5ν

T⟨x∗, θ∗⟩
log (T)

)
P{G1 ∩G2}

≥ ⟨x∗, θ∗⟩

(
1− log(2(d+ 1))T̃

T
− 78

√
d2.5ν

T⟨x∗, θ∗⟩
log (T)

)
P{G1 ∩G2}

≥ ⟨x∗, θ∗⟩

(
1− log(2(d+ 1))T̃

T
− 78

√
d2.5ν

T⟨x∗, θ∗⟩
log (T)

)(
1− 2 logT

T

)

≥ ⟨x∗, θ∗⟩

(
1−

log(2(d+ 1))3
√

Tdν log(T)

T
− 78

√
d2.5ν

T⟨x∗, θ∗⟩
log (T)− 2 logT

T

)

≥ ⟨x∗, θ∗⟩ − 78

√
⟨x∗, θ∗⟩d2.5ν

T
log (T)− 2

⟨x∗, θ∗⟩ log(2(d+ 1))3
√
d log(T)√

T
.

Hence, the Nash Regret can be bounded as

NRT = ⟨x∗, θ∗⟩ −

(
T∏
t=1

E[⟨Xt, θ
∗⟩]

)1/T

≤ 78

√
⟨x∗, θ∗⟩d2.5ν

T
log (T) + 2

⟨x∗, θ∗⟩ log(2(d+ 1))3
√
dν log(T)√

T
.

The theorem stands proved.

3.10 Conclusion and Future Work

Fairness and welfare considerations have emerged as a central design objective in online decision-

making. Motivated broadly by such considerations, the current work addresses the notion of

Nash regret in the linear bandits framework. We develop essentially tight Nash regret bounds

for linear bandit instances with a finite number of arms.

In addition, we extend this guarantee to settings wherein the number of arms is infinite.

Here, our regret bound scales as d5/4, where d is the ambient dimension. Note that, for linear

bandits with infinite arms, [AYPS11] obtains a bound of d/
√
T for average regret. We conjecture

that a similar dependence should be possible for Nash regret as well and pose this strengthening

as a relevant direction of future work. Another important direction would be to study Nash

regret for other bandit frameworks (such as contextual bandits and combinatorial bandits) and

85

Markov Decision Processes (MDPs).

86

Chapter 4

Full Feedback with Adversarial

Rewards

In this chapter, we delve into the realm of online learning where the rewards are generated

adversarially. Unlike bandit feedback, where only the chosen action’s reward is revealed, in this

framework, the algorithm receives feedback in the form of a reward function associated with

each action, even for the unchosen ones. The algorithm must sequentially select actions from

a given set and update its decision-making based on the received rewards. This setting poses

unique challenges and requires robust strategies to handle the adversarial nature of the reward

generation process.

Formally, consider a set of actions X ⊂ Rd represented as d-dimensional vectors and sequence

of concave reward functions f1, f2, . . . , fT , where ft : X → R represents the reward function

associated with the t-th round. In each round t, the algorithm selects an action xt ∈ X and

receives a reward rt = ft(xt). The performance of the algorithm is measured in terms of the

Nash Social Welfare (NSW) across rounds. We define Nash Regret as the difference between

the algorithm’s performance well with respect to the best fixed action in hindsight where the

best fixed action in hindsight is defined as

x∗ = argmax
x∈X

(
T∏
t=1

ft(x)

)
. (4.1)

Nash regret is defined as

NRT =

(
T∏
t=1

ft(x
∗)

) 1
T

−

(
T∏
t=1

ft(xt)

) 1
T

(4.2)

87

Next, we look at a special case of online concave optimization, namely the Experts problem,

and provide an algorithm that achieves an essentially tight Nash Regret.

4.1 Prediction with Expert Advice

Consider a set of N experts enumerated as 1, 2, . . . N , each providing predictions or advice on

the outcome of a given task. At each round t, the learner receives the predictions of the N

experts and selects one expert’s prediction. Notably, the learner choice can be randomized;

that is, in every round t the learner outputs a distribution pt over the set of experts, where pti

denotes the probability with which the ith expert is chosen. Subsequently, the true outcome of

the task is revealed, and the learner receives a reward corresponding to the chosen distribution

over the expert.

We use rt to denote the reward vector in round t where rti denotes the reward corresponding

to the ith expert. The performance of the algorithm is accessed ex-ante, that is, in each round

t the algorithms performance is equal to ⟨pt, rt⟩ =
∑N

i=1 pti rti The goal again is to minimize

the Nash Regret, which, in the context of experts problem setting, is defined as

NRT = max
i∈[N]

(
T∏
t=1

rti

) 1
T

−

(
T∏
t=1

⟨pt, rt⟩

) 1
T

Algorithm 7 Prediction with Experts Advice
Input:1, 2, . . . N Experts

1: Initialize wi = 1 ∀i ∈ [N].
2: for t ∈ 1, 2, . . . , T do
3: Choose an expert i with probability pti =

wi∑N
j=1 wj

.

4: for Expert i ∈ [N] do
5: Observe reward rti.
6: Update wi ← wi × rti
7: end for
8: end for

Theorem 4.1. For bounded rewards, that is, rti ∈ [0, 1] for all t and i, Algorithm 7 achieves a

Nash regret of

NRT ≤
logN

T

88

Proof. Consider round t, the probability of choosing arm i is given by

pti =

∏t−1
s=1 rsi∑

i∈[N]

∏t−1
s=1 rsi

The expected reward is given by

⟨pt, xt⟩ =
∑
i∈[N]

ptirti =
∑
i∈[N]

∏t−1
s=1 rsi∑

i∈[N]

∏t−1
s=1 rsi

rti

=

∑
i∈[N]

∏t
s=1 rsi∑

i∈[N]

∏t−1
s=1 rsi

We define Wt :=
∑

i∈[N]

∏t
s=1 rsi. Using this definition we have for all t ≥ 2, we have

⟨pt, xt⟩ =
Wt

Wt−1

Hence, the Nash Social Welfare of the algorithm is equal to

T∏
t=1

⟨pt, xt⟩ = ⟨p1, x1⟩
T∏
t=2

Wt

Wt−1

= ⟨p1, x1⟩
WT

W1

=

∑
i∈[N] r1i

k

WT

W1

=
WT

k

Now let the best expert in hindsight be denoted as i∗ = argmaxi∈[N]

∏T
t=1 rti. The Nash regret

bound can be obtained as

NRT =

(
T∏
t=1

rti∗

) 1
T

−

(
T∏
t=1

⟨pt, xt⟩

) 1
T

≤

(
T∏
t=1

rti∗

) 1
T

−
(
WT

k

) 1
T

≤

(
T∏
t=1

rti∗

) 1
T (

1− 1

k
1
T

)
(since WT =

∑
i∈[N]

∏T
s=1 rsi ≥

∏T
t=1 rti∗)

89

=

(
T∏
t=1

rti∗

) 1
T (

1− e
log k
T

)

≤

(
T∏
t=1

rti∗

) 1
T (

log k

T

)
≤ log k

T
(since rti ∈ [0, 1])

The theorem stands proved.

4.1.1 Lower Bound

We will now establish a lower bound for the experts problem that matches the upper bound

presented in Theorem 4.1 upto log factors.

Theorem 4.2. For every Algorithm A, there exists an instance of the experts problem such

that the Nash regret, NRT satisfies

NRT ≥
1

2T

Proof. Consider a randomized instance with binary rewards. In each round t ∈ [T] and for

every arm i ∈ [N], we have

rti =

0 with probability 1
T
,

1 with probability 1− 1
T
.

With respect to this randomized instance, the expected Nash Regret can be calculated as

E [NRT] = E

max
i∈[N]

(
T∏
t=1

rti

) 1
T

− E

(T∏
t=1

⟨pt, rt⟩

) 1
T

 ,

where the expectation is taken with respect to the random rewards generated according to

(4.1.1).

The expected reward for any choice of pt in round t is given by

E [⟨pt, rt⟩] =
∑
i∈[N]

ptiE [rti]

=

(
1− 1

T

)∑
i∈[N]

pti

90

=

(
1− 1

T

)
.

Using Jensen’s inequality and the concavity of the geometric mean, we have

E

(T∏
t=1

⟨pt, rt⟩

) 1
T

 ≤ (T∏
t=1

E [⟨pt, rt⟩]

) 1
T

= 1− 1

T

Next, we consider the expected value of the best arm in hindsight. The probability of any arm

receiving a reward of 1 in every round is given by(
1− 1

T

)T

≥ 1

e

(
1− 1

T

)
≥ 1

3
≥ 1

3

In other words, for any expert i, with probability greater than 2
3
the Nash Social Welfare

(
∏T

t=1 rti) is equal to 1. The probability with which at least one expert has nonzero NSW value

is greater than

1−
(
2

3

)N

≥ 1− 1

T 2
(assuming N ≥ 5 log T)

That is, with probability greater than
(
1− 1

T 2

)
, we have maxi∈[N]

(∏T
t=1 rti

) 1
T
= 1. Therefore,

E

max
i∈[N]

(
T∏
t=1

rti

) 1
T

 ≥ 1− 1

T 2
− () .

This gives us a lower bound on the expected Nash Regret of any algorithm for this instance

NRT ≥ 1− 1

T 2
−
(
1− 1

T

)
≥ 1

2T

The theorem stands proved.

4.2 Online Concave Optimization

Let us consider the setting of Online Concave Optimization (OCO). We define a convex set

X ⊂ Rd and a sequence of reward functions f1, f2, . . . , fT , where ft : X → R+ represents the

91

reward function associated with the t-th round. Each function ft is concave and positive. It is

important to note that these functions are chosen by an oblivious adversary.

During each round, the OCO algorithm selects a point in the set X, and subsequently,

the corresponding reward function is revealed. It is worth mentioning that if all the reward

functions correspond to the same function, denoted as ft = f for all t ∈ [T], the OCO problem

reduces to an offline optimization problem.

Now we present Algorithm 8, which achieves a low Nash Regret.

Algorithm 8 Nash OCO

Input: A convex set X

1: Initialize the dummy function f0(x) = 1∀x ∈ X

2: for t ∈ 1, 2, . . . , T do
3: Calculate xt using the following formula

xt =

∫
x∈X

∏T
s=0 fs(x)∫

x∈X
∏T

s=0 fs(x) dx
x dx

4: Play xt and receive reward ft(xt).
5: end for

Before deriving a bound on the Nash regret for Algorithm 8, we will first examine the

problem of online convex optimization with exp-concave loss functions and discuss known bound

on cumulative regret for such functions.

Definition 4.1. A convex function h : Rn → R is defined to be exp-concave over a set X if the

function g is concave, where g : X→ R is defined as

g(x) = e−h(x)

We will use the following lemma from [H+16] to obtain a regret bound.

Lemma 4.1 (Theorem 4.4 [H+16]). The exponentially weighted online optimizer (Algorithm

11 in [H+16]) when used for a sequence of exp-concave loss functions, {g1, g2, . . . , gT}, and a

given convex set, X ⊂ Rd, satisfies

T∑
t=1

gt(xt)−min
x∈X

T∑
t=1

gt(x) ≤ d log T + 2. (4.3)

We will now obtain an upper bound for the Nash regret of Algorithm 8.

92

Theorem 4.3. For any sequence of positive concave reward functions {f1, f2, . . . , fT} bounded
between [0, 1], the Nash regret of Algorithm 8 satisfies

NRT ≤
2d log T

T
.

Proof. We begin by noting that the function gt(x) := − log ft(x) is exp-concave over the set X.

The calculation of xt in Algorithm 8 can be equivalently expressed in terms of gt as

xt =

∫
x∈X

e−
∑T

s=0 gs(x)∫
x∈X e

−
∑T

s=0 gs(x) dx
x dx.

This is exactly the same as the calculation of xt in Algorithm 11 in [H+16]. Therefore, we can

directly use the cumulative regret bound from Lemma 4.1. Now let us examine the left-hand

side (LHS) of (4.3). From the definition of gt, we have

T∑
t=1

gt(xt)−min
x∈X

T∑
t=1

gt(x) = − log
T∏
t=1

ft(xt) + max
x∈X

log
T∏
t=1

ft(x)

= log

∏T
t=1 ft(x

∗)∏T
t=1 ft(xt)

(recall x∗ = argmaxx∈X

(∏T
t=1 ft(x)

)
)

By (4.3), we have

log

∏T
t=1 ft(x

∗)∏T
t=1 ft(xt)

≤ d log T + 2

≤ 2d log T (assuming T ≥ 9)

Dividing both sides by T and exponentiating, we obtain

(∏T
t=1 ft(x

∗)
) 1

T

(∏T
t=1 ft(xt)

) 1
T

≤ e
2d log T

T

≤ 1 +
2d log T

T

93

Rearranging the terms, we get

(
T∏
t=1

ft(x
∗)

) 1
T

−

(
T∏
t=1

ft(xt)

) 1
T

≤

(
T∏
t=1

ft(xt)

) 1
T
2d log T

T

≤ 2d log T

T
. (since ft-s are bounded between [0, 1])

This completes the proof of the theorem.

94

Chapter 5

Learning Good Interventions in Causal

Bayesian Networks

In this chapter, We study the causal bandit problem that entails identifying a near-optimal

intervention from a specified set A of (possibly non-atomic) interventions over a given causal

graph. Here, an optimal intervention in A is one that maximizes the expected value for a

designated reward variable in the graph, and we use the notion of simple regret to quantify

near optimality. Considering Bernoulli random variables and for causal graphs on N vertices

with constant in-degree, prior work has achieved a worst case guarantee of Õ(N/
√
T) for simple

regret. We utilize the idea of covering interventions (which are not necessarily contained within

A) and establishes a simple regret guarantee of Õ(
√
N/T). Notably, and in contrast to prior

work, our simple regret bound depends only on explicit parameters of the problem instance.

We also go beyond prior work and achieve a simple regret guarantee for causal graphs with

unobserved variables. Further, we perform experiments to show improvements over baselines

in this setting.

5.1 Our Contributions

We present an algorithm to minimize simple regret in the causal bandit problem. Here, the

learner is given a causal graph G on N Bernoulli random variables and a set A of (possibly non-

atomic) interventions over G. The learner’s objective is to identify, within A, an intervention

that maximizes the expected value for a designated reward variable in G. Furthermore, we

consider a model wherein, while a near-optimal intervention is required from the target set A,

the learner is not confined to A during the exploration phase. In particular, we use the construct

of covering interventions (see Definition 5.1) during exploration and show that this flexibility

95

leads to multiple improvements over prior work. Indeed, this model is applicable in many

settings wherein the learner is not confined to the target set during exploration. Consider, as

stylized examples: (i) the display advertising context, wherein, during testing, one can intervene

upon features, which during deployment, cannot be altered, and (ii) robotic control, in which,

during simulations, hypothetical configurations can be deployed.

In fact, our result is robust enough to be used in settings where certain variables cannot

be intervened upon even during exploration. One can consider such ‘off-limits’ variables as

unobserved and then utilize our extension to graphs with unobserved parts (see Section 5.5).

The list below summarizes our main contributions:

• For the causal bandit problem, we improve the worst-case guarantee for simple regret

from Õ(
√

N2/T) to Õ(
√

N/T).1 Here, the Õ(·) notation subsumes the dependence on

the maximum in-degree d in the graph and logarithmic factors; see Theorem 5.1 for an

explicit bound. Our algorithm can address arbitrary causal graphs. Though, as in prior

works [YHS+18, ABDK18], our result is particularly relevant for graphs in which the

maximum in-degree d is sufficiently smaller than N .

• We obtain a novel simple regret algorithm for causal graphs with unobserved variables.

This extension addresses the most general setting for causal Bayesian networks (see Defi-

nition 1.3.1 in [Pea00]) and addresses a key limitation of almost all2 prior works on causal

bandits. We detail the extension in Section 5.5.

• Our experiments show a marked improvement on the baselines from prior work (see

Section 5.7), thereby substantiating the theoretical guarantees.

Our worst-case guarantee for simple regret is in terms of only the explicit parameters, such

as the number of variables N and the maximum in-degree in G; see Theorem 5.1. By contrast,

the simple regret bound provided in [YHS+18] depends on analytically complex quantities. In

addition, our guarantee holds for time horizon T ≳ N3. This is a marked improvement over

[YHS+18], which requires T ≳ N16. In fact, our algorithm (Algorithm 9) is notably simple – we

view this as a positive feature, which aids in implementation and adaptation of the developed

method. Here, it is also relevant to note that the key technical contribution of the work is the

involved regret analysis (see Section 2.3.1).

1As mentioned previously, T denotes the time horizon (i.e., number of exploratory interventions) and N
denotes the number of vertices in the causal graph.

2The exceptions here are the recent works of Maiti et al. [MNS22] along with Xiong and Chen [XC23]. These
works are discussed at the end of the section.

96

Covering interventions as a complementary tool for exploration. We note that covering inter-

ventions do not conform to the existing causal-bandit framework of exploring solely within the

specified set of interventions A. However, instead of viewing A as a confined set of ‘arms,’ one

can work with the enriched perspective that causal bandits are an optimization problem. In-

deed, the goal of the optimization problem is to identify the best intervention in A, but—similar

to many other optimization methods—exploration can happen outside the feasible region (i.e.,

outside A). In this spirit, the use of covering interventions can be identified as a complementary

exploration model. This model leverages the richer context of the causal bandits setting (e.g.,

the causal graph itself) and, as mentioned previously, is potentially applicable in various real-

world contexts. Overall, covering interventions are theoretically interesting and enable notable

improvements, including novel simple regret guarantees with unobserved variables.

5.2 Additional Related Work

Lattimore et al. [LLR16] first addressed the causal bandit, though only for parallel causal graphs

and with atomic interventions. Maiti et al. [MNS22] extended this work on atomic interven-

tions to provide simple regret guarantees in the presence of unobserved or hidden variables.

An importance sampling based approach was studied in [SSDS17] to identify atomic soft inter-

ventions that minimize simple regret. Lu et al. [LMTY20] provide guarantees for cumulative

regret for general causal graphs (which include hidden variables). Nair et al. [NPS21] looked

at cumulative as well as simple regret in case of the budgeted setting where the observation-

intervention trade-off was studied when interventions are costlier than observations. Sen et

al. [SSK+17] extend the model causal bandits to include contextual causal bandits and study

cumulative regret in this context. Lu et al. [LMT21] study cumulative regret in the case where

the full graph structure is not known. The work [LMT22] extends the model for causal bandits

to include causal Markov decision processes (C-MDPs) using a modification of the algorithm

in [AOM17].

There are two recent works that focus on non-atomic interventions in the causal bandit

context. The paper by Varici et al. [VSST22] studies cumulative regret for causal bandits with

non-atomic interventions, albeit in the specific context of linear structural equation models.

Xiong and Chen [XC23] obtain sample-complexity bounds for identification of near-optimal

interventions, with a particular focus on binary generalized linear models (BGLMs). The

worst-case sample complexity guarantee obtained in [XC23] is proportional to the size of the

intervention set A, i.e., proportional to |A|. By contrast, the simple regret bound obtained in

the current work has only a logarithmic dependence on |A|; recall that |A| can be exponentially

large. Xiong and Chen [XC23] also address the case of unobserved (hidden) variables. However,

97

this work assumes identifiability (the fact that all interventional distributions can be estimated

through observations alone). We require no such assumption.

Apart from these works on causal bandits, we utilize the idea of covering interventions

proposed by Acharya et al. [ABDK18]. They use covering interventions for distribution learning

and testing problems over causal graphs. On the other hand, we use covering interventions

for simple regret minimization. It is important to note that a direct use of the distribution

learning algorithm (Algorithm 3) from [ABDK18] leads to a suboptimal regret bound for the

causal bandit problem. Specifically, the learning algorithm of Acharya et al. [ABDK18] requires

Õ(N2ε−4) samples to learn interventional distributions up to a total variation distance of ε; see

Theorem 3.4 in [ABDK18]. Hence, if used for identifying a near-optimal intervention in A, this

method would incur Õ
(√

N
T 1/4

)
simple regret.

5.3 Notation and Preliminaries

We study the causal bandit problem over causal graphs G = (V, E). In the given (directed and

acyclic) graph G the vertices, V, correspond to Bernoulli random variables and E is the set of

directed edges that capture causal relations between these variables.

We will use Vi or i, interchangeably, to refer to the ith node of the given causal graph G.

Since G is directed and acyclic, it admits a topological ordering. We will, throughout, assume

that the vertices in V are indexed to respect a topological order, i.e., for each pair of indices

i < j, vertex Vi appears before Vj in the topological order. Note that for any subset of vertices

U ⊆ V the indexing of the vertices within U follows the topological ordering of these vertices.

Furthermore, in the set V, the last vertex with respect to the indexing (and, equivalently, the

topological ordering) is the designated reward variable. That is, in a causal graph with N := |V|
vertices, VN is the reward variable.

Write Pa(i) to denote the set of parents of node Vi. Also, we define the set of parents for

a subset of vertices U ⊆ V as Pa(U) := (∪V ∈U Pa(V)) \ U. We use the following notations

to indicate subsets of the vertices: write [i, j] := {Vi, Vi+1, Vi+2 . . . Vj} and, similarly, (i, j] =

[i+1, j], (i, j) = [i+1, j− 1] and [i, j) = [i, j− 1]. Write the ancestor set Ac(i) := [1, i) \Pa(i),
i.e., Ac(i) denotes the set of vertices that precede Vi in the topological ordering, excluding the

parents Pa(Vi).

An intervention is defined as an N = |V| dimensional vector A ∈ {0, 1, ∗}N that encapsulates

the values assigned to each vertex in G; in particular, Ai = ∗ denotes that Vi is not intervened

upon, while Ai = 1 and Ai = 0 denote that, in the intervention, Vi is set to 1 and 0, respectively.

In addition, V(A) := {Vi ∈ V : Ai = ∗} denotes the set of vertices that are not intervened under

A. Also, for any subset of vertices U ⊆ V, write VU(A) := U ∩ V(A).

98

Binary vectors z ∈ {0, 1}N will be used to denote an assignment to the vertices (random

variables) in V. Here, zi denotes the assignment to vertex Vi. For any subset of vertices U ⊆ V,

we will use zU ∈ {0, 1}|U| to denote an assignment to the vertices in U. Let Z(A) denote the

set of all binary assignments that comply with an intervention A and have the reward VN = 1,

i.e., Z(A) := {z ∈ {0, 1}N : zi = Ai, for all i ∈ V \ (V(A)), and zN = 1}.
We use the following short-hand notations in our analysis to denote the conditional and

interventional probability distributions:

P (zi | zU) = P [Vi = zi|U = zU] .

PzU (zi) = P [Vi = zi|do (U = zU)]

= Pdo(U=zU) [Vi = zi] .

PzU (zi | zW) = P [Vi = zi|do (U = zU) ,W = zW] .

PA (zi | zW) = P [Vi = zi|do (A) ,W = zW] .

It is important to note that intervening on all parent nodes of a vertex is the same as conditioning

on them

PzPa(i)
(zi) = P

(
zi | zPa(i)

)
(5.1)

We use µ (A) to denote the expected reward under interventionA, i.e., µ (A) = P [VN = 1|do(A)].
Specifically,

µ (A) =
∑

z∈Z(A)

∏
i∈V(A)

P
(
zi | zPa(i)

)
We use µ̂(A) and P̂ () to denote the estimates for the corresponding quantities, and ∆P () to

denote the error in the estimates. In particular, for an empirical estimation in which vertex Vi

is sampled Ti times, with parents taking value zPa(i) ∈ {0, 1}|Pa(i)|, we have estimate

P̂
(
zi | zPa(i)

)
=

∑Ti

s=1 I[Yi,s = zi]

Ti

,

where Yi,s is the s-th sample of vertex Vi. In addition, we have

∆P
(
zi | zPa(i)

)
= P

(
zi | zPa(i)

)
− P̂

(
zi | zPa(i)

)
µ̂(A) =

∑
z∈Z(A)

∏
i∈V(A)

P̂
(
zi | zPa(i)

)
(5.2)

99

Recall that, in the causal bandits problem, the objective is to find—from within a specified

collection of interventions A—an intervention with maximum possible expected reward. We

will write A∗ ∈ A to denote the optimal intervention and µ(A∗) for the optimal reward, i.e.,

µ(A∗) = maxA∈A µ(A). Also, for any algorithm, let AT ∈ A be the (randomized) output

computed after T rounds; in each round the algorithm performs an intervention and observes

a sample under it.1 The simple regret of the algorithm is defined as

RT = E [µ(A∗)− µ(AT)] . (5.3)

5.4 Finding Near-Optimal Intervention via Covering

To find a near-optimal intervention from the given set of interventions A (specifically, to bound

simple regret), instead of directly performing each A ∈ A, we utilize interventions from a

curated set of interventions I, referred to as the covering intervention set (see Definition 5.1).

The obtained samples are then used to estimate the interventional distribution for each A ∈ A

and, hence, find a near-optimal intervention within A. The notion of covering intervention set

was formulated in [ABDK18] and is defined next.

Definition 5.1 (Covering Intervention Set). A collection of interventions I is said to be a

covering intervention set iff, for each vertex i ∈ V and every assignment zPa(i) ∈ {0, 1}|Pa(i)|,
there exists an intervention I ∈ I with the properties that

• Vertex i not intervened in I (i.e., Ii = ∗).

• Every vertex in Pa(i) is intervened (i.e., Ip ̸= ∗, for all p ∈ Pa(i)).

• I restricted to Pa(i) has the assignment zPa(i) (i.e., Ip = zPa(i),p for all p ∈ Pa(i)).

It is shown in [ABDK18] that, for any causal graph G with N vertices and in-degree at

most d, one can construct—using a randomized method—a covering intervention set I of size

O
(
d 2d log(NT)

)
.

Specifically, for count k = 3d 2d(logN + 2d + log T), one can populate k interventions

I ∈ {0, 1, ∗}N as follows: for each variable i ∈ V, independently, set

Ii =


0 with probability d

2(1+d)
,

1 with probability d
2(1+d)

,

∗ otherwise.

1Note that while the computed intervention must be contained in set A, the interventions performed in the
T rounds are not necessarily from A.

100

All the constructed k interventions constitute the set I. This randomized construction is known

to succeed (in providing a covering interventions set) with probability at least (1− 1/T). For-

mally,1

Lemma 5.1 ([ABDK18]). For any moderately large T ∈ Z+, every causal graph G—with N

vertices and in-degree at most d—admits a covering intervention set I of size k = 3d 2d(logN+

2d+ log T). Furthermore, such a set I can be found with probability at least (1− 1/T).

We will write ConstructCover(G) to denote the randomized construction of I mentioned

above. ConstructCover(·) will be used as a subroutine in our simple-regret algorithm

(Algorithm 9).

Theorem 5.1, stated below, is the main result of this section. The theorem asserts that, for

causal graphs with constant in-degree and N vertices, Algorithm 9 achieves a simple regret of

Õ
(√

N/T
)
.

Given a causal graph G and a collection of interventions A, Algorithm 9 first obtains a

covering intervention set I, for the graph G, via the subroutine ConstructCover. Then, the

algorithms performs, T/|I| times, each intervention I ∈ I. Since I is a covering intervention set,

for each vertex î ∈ V, there exists an intervention Î ∈ I under which all the parents Pa
(̂
i
)
are

intervened upon, but î itself is not. The intervention Î has already been performed T/|I| times

by the algorithm. Using these T/|I| independent samples and for a specific assignment zPa(̂i)

(induced under Î), we have the estimate P̂
(
ẑi | zPa(̂i)

)
. Hence, for every vertex i ∈ V and every

assignment zPa(i), the algorithm has an estimate P̂
(
zi | zPa(i)

)
in hand. Using these probability

estimates, the algorithm computes the reward estimates µ̂(A) for each intervention A ∈ A; see

equation (5.2). Finally, enumerating over the given set A, the algorithm returns the intervention

with the maximum estimated reward. It is relevant to note that this patently simple algorithm

requires a technically involved regret analysis (detailed in Section 2.3.1). Indeed, the analysis

is a key contribution of the current work.

Theorem 5.1. Let G be any given causal graph with N vertices and in-degree at most d. Also,

let I be a covering intervention set of G. Then, Algorithm 9—when executed for any (moderately

large) time horizon T—achieves simple regret

RT = O

(√
N |I| log (|A|T)

T

)
.

1This lemma is a direct implication of Lemma 2 from [ABDK18], instantiated with δ = 1
T , K = 2.

101

Algorithm 9 Covering Interventions Algorithm

Input: Causal graph G, target intervention set A, and time horizon T ∈ Z+.

1: Set I← ConstructCover(G).
2: For each I ∈ I, intervene with do(I) and collect T

|I| samples.

3: for each intervention A ∈ A do
4: Compute µ̂(A) using equation (5.2).
5: end for
6: return argmaxA∈A µ̂(A).

Hence, using Lemma 5.1, we obtain the following bound on the simple regret of Algorithm 9

RT = O

(√
N d2d log |A|

T
log T

)
.

For graphs with additional structure (e.g. bounded out degree or trees), one can obtain

covering intervention sets with size smaller than the one provided in Lemma 5.1 (see Lemma 2

in [ABDK18]). Since the regret guarantee of Algorithm 9 depends on the size of the covering

intervention set, the simple regret bound improves for such specific graphs.

5.4.1 Regret Analysis

We first provide a standard concentration bound which will be used in the analysis.

Lemma 5.2 (Hoeffding’s Inequality). Let Z1, . . . , Zn be independent bounded random variables

with Zi ∈ [ai, bi], for all i ∈ [n]. Then, for all ε ≥ 0:

P

{∣∣∣∣∣
n∑

i=1

(Zi − E [Zi])

∣∣∣∣∣ ≥ ε

}
≤ 2 exp

(
− 2ε2∑n

i=1(bi − ai)2

)
.

To begin the regret analysis, we note that, for each intervention A ∈ A, the estimate µ̂(A)

can be expressed as

µ̂ (A) =
∑

z∈Z(A)

∏
i∈V(A)

(
P
(
zi | zPa(i)

)
+∆P

(
zi | zPa(i)

))
.

Expanding the product, we obtain

µ̂ (A) = µ(A)+
∑

z∈Z(A)

(∑
i∈V(A)

∆P
(
zi | zPa(i)

) ∏
j∈V(A),j ̸=i

P
(
zj | zPa(j)

)
+ Lz

)
.

102

Here, Lz represents all the product entries in the expansion that include more than one error

term of the form ∆P(· | ·). Specifically,

Lz =

|V(A)|∑
k=2

∑
U⊆V(A)
|U |=k

[(∏
i∈U

∆P
(
zi | zPa(i)

))
×

(∏
j∈V(A)\U

P
(
zj | zPa(j)

))]
(5.4)

We further write Hz to represent the sum of the entries with a single error term:

Hz :=
∑

i∈V(A)

∆P
(
zi | zPa(i)

) ∏
j∈V(A)
j ̸=i

P
(
zj | zPa(j)

)
(5.5)

Hence,

µ̂(A)− µ(A) =
∑

z∈Z(A)

(Hz + Lz) .

We will establish upper bounds on the sums of Lzs and Hzs and in Lemma 5.4 and Lemma

5.5, respectively. These lemmas show that the sum of the H terms dominates the sum of the

L terms. Furthermore, these bounds imply that the estimated reward µ̂(A) is sufficiently close

to the true expected reward µ(A) for each A ∈ A.

Lemma 5.3. For estimates obtained via a covering intervention set I, as in Algorithm 9, write

E to denote the event that |∆P
(
zi | zPa(i)

)
| ≤

√
|I|(d+log (NT))

T
, for all vertices i ∈ V and all

assignments zPa(i) ∈ {0, 1}|Pa(i)|. Then, P{E} ≥
(
1− 2

T

)
.

Proof. Since I is a covering intervention set, for each conditional distribution P
(
zi | zPa(i)

)
, we

have at least T
|I| independent samples. Now, we invoke Lemma 5.2, with ε =

√
|I| log (2dNT)

T
, and

apply the union bound over all i ∈ [N] and all assignments to Pa(i). This gives us the desired

probability bound.

Lemma 5.4. For estimates obtained via a covering intervention set I, as in Algorithm 9, the

following event holds with probability at least
(
1− 2

T

)
:∑

z∈Z(A)

|Lz| ≤ 4(Nη)2 for all A ∈ A.

103

Here, parameter η =
√

|I|(d+log (NT))
T

and T is moderately large.

Proof. We will use the fact that each error term in Lz satisfies the bound stated in Lemma

5.3. Moreover, we utilize the graph structure to marginalize variables that do not appear in an

expansion of Lz.

∑
z∈Z(A)

|Lz| ≤
∑

z∈Z(A)

|V(A)|∑
k=2

∑
U⊆V(A)
|U |=k

(∏
i∈U

∣∣∆P
(
zi | zPa(i)

)∣∣) ∏
j∈V(A)\U

P
(
zj | zPa(j)

)

=

|V(A)|∑
k=2

∑
z∈Z(A)

∑
U⊆V(A)
|U |=k

(∏
i∈U

∣∣∆P
(
zi | zPa(i)

)∣∣) ∏
j∈V(A)\U

P
(
zj | zPa(j)

) .

First, we upper bound each term considered in the outer-most sum. Towards this, let

U = {Vx1 , Vx2 , . . . , Vxk
} to be a subset of vertices that appears in the inner sum. Here, x1 <

x2 < . . . < xk and, as mentioned previously, the indexing of the vertices respects a topological

ordering over the causal graph. In the derivation below, we will split the sum into k parts,∑
z[1:x1]

∑
z(x1:x2]

. . .
∑

z(xk:N]
, and individually bound the marginalized probability distribution.

∑
z∈Z(A)

∑
U⊆V(A)
|U |=k

(∏
i∈U

∣∣∆P
(
zi | zPa(i)

)∣∣) ∏
j∈V(A)\U

P
(
zj | zPa(j)

)

≤
∑

U⊆V(A)
|U |=k

∑
z∈Z(A)

ηk

 ∏
j∈V(A)\U

P
(
zj | zPa(j)

) (via Lemma 5.3,
∣∣∆P

(
zi | zPa(i)

)∣∣ ≤ η)

=
∑

U⊆V(A)
|U |=k

ηk
∑

z[1:x1]∈Z[1:x1]
(A)

 ∏
j1∈V[1:x1)

(A)

P
(
zj1 | zPa(j1)

) ∑
z(x1:x2]∈Z(x1:x2]

(A)

 ∏
j2∈V(x1:x2)

(A)

P
(
zj2 | zPa(j2)

) . . .

∑
z∈Z(xi:xi+1]

(A)

 ∏
ji∈V(xi:xi+1)

(A)

P
(
zji | zPa(ji)

) . . .
∑

z(xk:N]∈Z(xk:N](A)

 ∏
jk∈V(xk:N](A)

P
(
zjk | zPa(jk)

)
(5.6)

104

The last term in the above expression can be bounded as follows

∑
z(xk:N]∈Z(xk:N](A)

 ∏
j∈V(xk:N](A)

P
(
zj | zPa(j)

) =
∑

z(xk:N]∈Z(xk:N](A)

Pdo(A)

[
V(xk:N](A) = z(xk:N]|Pa(V(xk:N](A))

]
= Pdo(A)

[
VN = 1|Pa

(
V(xk:N](A)

)]
≤ 1.

For all other terms, we have the following inequality

∑
z∈Z(xi:xi+1]

(A)

 ∏
j∈V(xi:xi+1)

(A)

P
(
zj | zPa(j)

)
=

∑
zxi+1∈{0,1}

∑
z(xi:xi+1)

∈Z(xi:xi+1)
(A)

 ∏
j∈V(xi:xi+1)

(A)

P
(
zj | zPa(j)

)
=

∑
zxi+1∈{0,1}

∑
z(xi:xi+1)

∈Z(xi:xi+1)
(A)

Pdo(A)

[
V(xi:xi+1)(A) = z(xi:xi+1)|Pa

(
V(xi:xi+1)(A)

)]
≤

∑
zxi+1∈{0,1}

1

= 2.

Substituting in (5.6), we get

∑
z∈Z(A)

∑
U⊆V(A)
|U |=k

(∏
i∈U

∣∣∆P
(
zi | zPa(i)

)∣∣) ∏
j∈V(A)\U

P
(
zj | zPa(j)

) ≤ ∑
U⊆V(A)
|U |=k

(2η)k =

(
N

k

)
(2η)k .

Therefore, the sum
∑

z∈Z(A) |Lz| satisfies

∑
z∈Z(A)

|Lz| ≤
N∑
k=2

(
N

k

)
(2η)k

=
N∑
k=0

(
N

k

)
(2η)k − 2Nη − 1

= (1 + 2η)N − 2Nη − 1

≤ e2Nη − 2Nη − 1

≤ 1 + 2Nη + (2Nη)2 − 2Nη − 1 (with η ≤ 1
2N

)

105

≤ 4N2η2.

The lemma stands proved.

Lemma 5.5. For estimates obtained via a covering intervention set I, as in Algorithm 9, the

following event holds with probability at least
(
1− 2

T

)
:∣∣∣∣∣∣

∑
z∈Z(A)

Hz

∣∣∣∣∣∣ ≤
√

N |I| log (|A|T)
T

for all A ∈ A.

Proof. The definition of Hz gives us∣∣∣∣∣∣
∑

z∈Z(A)

Hz

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

z∈Z(A)

∑
i∈V(A)

∆P
(
zi | zPa(i)

) ∏
j∈V(A),j ̸=i

P
(
zj | zPa(j)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

i∈V(A)

∑
z∈Z(A)

∆P
(
zi | zPa(i)

) ∏
j∈V(A),j ̸=i

P
(
zj | zPa(j)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑

i∈V(A)

∑
z[1:i]∈

Z[1:i](A)

∆P
(
zi | zPa(i)

) ∏
j∈V[1:i)(A)

P
(
zj | zPa(j)

) ∑
z(i:N]∈

Z(i:N](A)

∏
k∈V(i:N](A)

P
(
zk | zPa(k)

)∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑

i∈V(A)

∑
z[1:i]∈

Z[1:i](A)

∆P
(
zi | zPa(i)

) ∏
j∈V[1:i)(A)

P
(
zj | zPa(j)

) ∑
z(i:N]∈

Z(i:N](A)

Pdo(A)

[
V(i:N](A) = z(i:N] | Pa

(
V(i:N](A)

)]∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑

i∈V(A)

∑
z[1:i]∈

Z[1:i](A)

∆P
(
zi | zPa(i)

) ∏
j∈V[1:i)(A)

P
(
zj | zPa(j)

)
Pdo(A)

[
VN = 1 | Pa

(
V(i:N](A)

)]∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑

i∈V(A)

∑
zi∈{0,1}

∑
z[1:i)∈

Z[1:i)(A)

∆P
(
zi | zPa(i)

) ∏
j∈V[1:i)(A)

P
(
zj | zPa(j)

)
Pdo(A)

[
VN = 1 | Pa

(
V(i:N](A)

)]∣∣∣∣∣∣∣∣

106

=

∣∣∣∣∣∣∣∣
∑

i∈V(A)

∑
zi∈{0,1}

∑
zPa(i)∈

ZPa(i)(A)

∆P
(
zi | zPa(i)

) ∑
zAc(i)∈

ZAc(i)(A)

∏
j∈V[1:i)(A)

P
(
zj | zPa(j)

)
Pdo(A)

[
VN = 1 | Pa

(
V(i:N](A)

)]∣∣∣∣∣∣∣∣ .
Recall that Ac(i) = [1, i) \ Pa(i) and write

ci(zi, zPa(i)) :=
∑

zAc(i)∈
ZAc(i)(A)

∏
j∈V[1:i)(A)

P
(
zj | zPa(j)

)
Pdo(A)

[
VN = 1 | Pa

(
V(i:N](A)

)]
(5.7)

Also, as a shorthand for zi = 1 and zi = 0 we will write 1i and 0i, respectively. With these

notations, we have∣∣∣∣∣∣
∑

z∈Z(A)

Hz

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑

i∈V(A)

∑
zi∈{0,1}

∑
zPa(i)∈ZPa(i)(A)

∆P
(
zi | zPa(i)

)
ci(zi, zPa(i))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

i∈V(A)

∑
zPa(i)∈ZPa(i)(A)

∆P
(
1i | zPa(i)

) (
ci(1i, zPa(i))− ci(0i, zPa(i))

)∣∣∣∣∣∣
(since ∆P

(
1i | zPa(i)

)
= −∆P

(
0i | zPa(i)

)
)

Since I is a covering intervention set, for each pair (i, zPa(i)), there exists an intervention

I ∈ I such that intervening do(I) provides a sample from the conditional probability distribution

P[Vi = 1 | Pa(Vi) = zi]. Hence, Line 2 of the algorithm provides at least T
|I| independent samples

from the conditional distribution P[Vi = 1 | Pa(Vi) = zi]. We write the sth sample for this

conditional distribution by Ys(i, zPa(i)). Now, we have

∣∣∣∣∣∣
∑

z∈Z(A)

Hz

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
∑

i∈V(A)

∑
zPa(i)∈

ZPa(i)(A)

|I|
T

T/|I|∑
s=1

Ys(i, zPa(i))− P
(
1i | zPa(i)

) (ci(1i, zPa(i))− ci(0i, zPa(i)))

∣∣∣∣∣∣∣∣ .
We will apply Hoeffding’s inequality (Lemma 5.2) to bound the above expression. Note that

in this expression, besides Ys(i, zPa(i))-s, all the other terms are deterministic. In particular, we

show in Claim 5.1 (stated and proved below) that
∑

zPa(i)∈ZPa(i)(A)(c(1i, zPa(i))−c(0i, zPa(i)))2 ≤ 1,

for all i. Hence, for any A ∈ A, Lemma 5.2 gives us

P

∣∣∣∣∣∣
∑

z∈Z(A)

Hz

∣∣∣∣∣∣ ≥ ε

 ≤ 2 exp

(
−Tε2

|I|
∑

i∈V(A)

∑
zPa(i)∈ZPa(i)(A)(ci(1i, zPa(i))− ci(0i, zPa(i)))2

)

107

≤ 2 exp

(
−Tε2

|I| |V(A)|

)
(via Claim 5.1)

≤ 2 exp

(
−Tε2

|I| N

)
.

Setting ε =
√

N |I| log (|A|T)
T

and taking union bound over all A ∈ A, gives us the required

probability bound. This completes the proof of the lemma.

We next establish the claim used in the proof of Lemma 5.5.

Claim 5.1. ∑
zPa(i)∈ZPa(i)(A)

(c(1i, zPa(i))− c(0i, zPa(i)))
2 ≤ 1.

Proof. The definition of c(zi, zPa(i)) (see equation (5.7)) gives us

|c(1i, zPa(i))− c(0i, zPa(i))|

=

∣∣∣∣ ∑
z∈ZAc(i)(A)

∏
j∈V[1:i)(A)

P
(
zj | zPa(j)

)
Pdo(A)

[
V[i+1:N](A) = z[i+1:N] | Pa

(
V[1:i](A)

)
= (z[1:i) ∪ 1i)

]
−

∑
z∈ZAc(i)(A)

∏
j∈V[1:i)(A)

P
(
zj | zPa(j)

)
Pdo(A)

[
V[i+1:N](A) = z[i+1:N] | Pa

(
V[1:i](A)

)
= (z[1:i) ∪ 0i)

]∣∣∣∣
=

∣∣∣∣ ∑
z∈ZAc(i)(A)

∏
j∈V[1:i)(A)

P
(
zj | zPa(j)

)(
Pdo(A)

[
V[i+1:N](A) = z[i+1:N] | Pa(V[1:i](A)) = (z[1:i) ∪ 1i)

]
−

Pdo(A)

[
V[i+1:N](A) = z[i+1:N] | Pa(V[1:i](A)) = (z[1:i) ∪ 0i)

])∣∣∣∣
≤

∑
z∈ZAc(i)(A)

∏
j∈V[1:i)(A)

P
(
zj | zPa(j)

) ∣∣∣∣Pdo(A)

[
V[i+1:N](A) = z[i+1:N] | Pa(V[1:i](A)) = (z[1:i) ∪ 1i)

]
−

Pdo(A)

[
V[i+1:N](A) = z[i+1:N] | Pa(V[1:i](A)) = (z[1:i) ∪ 0i)

]∣∣∣∣
≤

∑
z∈ZAc(i)(A)

∏
j∈V[1:i)(A)

P
(
zj | zPa(j)

)
= Pdo(A)

[
VPa(i)(A) = zPa(i)

]
.

108

Hence, under intervention A ∈ A, we have∑
zPa(i)∈ZPa(i)(A)

(c(1i, zPa(i))− c(0i, zPa(i)))
2 ≤

∑
zPa(i)∈ZPa(i)(A)

|c(1i, zPa(i))− c(0i, zPa(i))|

≤
∑

zPa(i)∈ZPa(i)(A)

Pdo(A)

[
VPa(i)(A) = zPa(i)

]
≤ 1.

This completes the proof of the claim.

Recall that the random variables Lz and Hz depend on the error terms ∆P
(
zi | zPa(i)

)
.

Moreover, in Lemma 5.4 and 5.5, the considered sums can range over exponentially many such

variables. The technically involved contribution of these lemmas is that we obtain small error

bounds even in such settings of exponentially large sums.

5.4.2 Proof of Theorem 5.1

Lemma 5.1 implies that, with probability at least
(
1− 1

T

)
, the set I obtained in Line 1 of

Algorithm 9 is indeed a covering intervention set. We combine this guarantee with Lemmas 5.4

and 5.5. In particular, with probability at least
(
1− 5

T

)
, we have, for all A ∈ A:

|µ(A)− µ̂(A)|

=

∣∣∣∣∣∣
∑

z∈Z(A)

(Hz + Lz)

∣∣∣∣∣∣
≤
√

N |I| log (|A|T)
T

+
4N2|I|(d+ log (NT))

T

≤ 2

√
N |I| log (|A|T)

T
(for T ≳ N3)

Let AT ∈ A be the intervention returned by Algorithm 9 (after T rounds of interventions),

i.e., AT = argmaxA∈A µ̂(A). In addition, A∗ = argmaxA∈A µ(A) be the optimal intervention.

Hence, with probability at least
(
1− 5

T

)
, we have

µ(A∗)− µ(AT) ≤ 4

√
N |I| log (|A|T)

T
(5.8)

109

This guarantee gives us the desired upper bound on the simple regret, RT , of Algorithm 9:

RT = E [µ(A∗)− µ(AT)]

≤

(
4

√
N |I| log (|A|T)

T

)(
1− 5

T

)
+

5

T

≤ 5

√
N |I| log (|A|T)

T
.

Since the size of the covering intervention set satisfies |I| = 3d · 2d(logN + 2d + log T) (see

Lemma 5.1), we also have the following explicit form of the simple regret bound

RT = O

(√
N d2d log |A|

T
log T

)
.

The theorem stands proved.

5.5 Algorithm for Graphs with Unobserved Variables

We now extend our algorithm to causal graphs with unobserved variables. In particular, we

study Semi Markovian Bayesian Networks (SMBNs) where we have the causal graph defined

as G = (V, E, E ′). Here, E is the set of directed edges, and E ′ is the set of bi-directed edges

denoting the presence of an unobserved common parent. Any general causal graph can be

projected to an equivalent SMBN [TP02]. Hence, without loss of generality and throughout

this section, we assume that the causal graph is an SMBN. It is relevant to note that in an

SMBN all the vertices in V are observable and the unobserved variables are encapsulated by

the edges E ′.

Assume that the vertices V are topologically ordered (based on the directed edges E) and

the ordering is preserved in any subset U ⊂ V. The SMBN graph G can be decomposed

into a disjoint set of vertices known as confounded components (c-components), where each

c-component is the maximal set of vertices that are connected through a bi-directed edge in

E ′. Let C(A) denote all the c-components of G under intervention A. We use Ci to denote the

ith c-component in C(A). We assume that any Ci maintains the topological order (induced by

the directed edges E). Now, the joint distribution of the vertices for an assignment z ∈ Z(A),

under intervention A, can be written as

P [V = z | do(A)] =
∏

Ci∈C(A)

PzPa(Ci)
(zCi

) .

110

Under an empirical estimation, we represent the sth sample from the distribution PzPa(Ci)
(zCi

)

via the indicator random variable Ys(zCi
, zPa(Ci)), which takes the value one when VCi

= zCi
,

else it takes the value zero. Let n
(
Ci, zPa(Ci)

)
be the total number of samples in this for the

pair (Ci, zPa(Ci)). We compute the probability estimates as follows

P̂zPa(Ci)
(zCi

) =

∑Ti

s=1 Ys

(
zCi

, zPa(Ci)

)
n
(
Ci, zPa(Ci)

) (5.9)

µ̂(A) =
∑

z∈Z(A)

∏
Ci∈C(A)

P̂zPa(Ci)
(zCi

) (5.10)

Next, we extend the definition of covering intervention set (Definition 5.1) for SMBNs:

Definition 5.2. A set of intervention I is a covering intervention set if for all subsets S of

every c-component in G, and every assignment zPa(S) ∈ {0, 1}|Pa(S)| there exists and I ∈ I with

the properties that

• No vertex in S is intervened in I.

• Every vertex in Pa(S) is intervened in I.

• Pa(S) is intervened with assignment zPa(S).

We construct a covering intervention set as before using the randomized method in [ABDK18].

The next lemma states that the randomized method provides a covering intervention set of

size Õ(logN) even in the case of SMBNs. This result is a direct implication of Lemma 2 in

[ABDK18].

Lemma 5.6 ([ABDK18]). For any moderately large T ∈ Z+ and any causal graph G—with

in-degree at most d and c-components of size at most ℓ—there exists a covering intervention

set I of size k = (3d)ℓ 2ℓd(logN + 2ℓd + log T). Furthermore, such a set I can be found with

probability at least
(
1− 1

T

)
.

The simple regret algorithm for SMBNs is exactly the same as Algorithm 9, except for the

following two changes:

• TheConstructCover subroutine returns a covering intervention set of size (3d)ℓ2ℓd(logN+

2ℓd+ log T).

• We use equation (5.10) to compute the estimates µ̂(A) for each A ∈ A.

The theorem below is the main result of this section.

111

Theorem 5.2. Let G be any given causal graph over N vertices and with c-components of size

at most ℓ. Also, let the in-degree of the vertices in G be at most d. Then, for any (moderately

large) time horizon T and given any covering intervention set I of G, Algorithm 9 achieves

simple regret

RT = O

(√
N 2d 4ℓ |I| log (|A|T)

T

)
.

Hence, using Lemma 5.6, we obtain the following bound on the simple regret

RT = O

(√
N (3d 8d)ℓ log |A|

T
log T

)
.

5.5.1 Regret Analysis for SMBNs

We introduce the notion of pseudo parents of a vertex in a Semi Markov Bayesian Networks

(SMBN) graph G, which we will use throughout the proof. Recall that V denotes the set of

vertices, and they conform to a topological ordering. We assume that each c-component Ci

maintains the ordering. For an intervention A, consider any c-component C ∈ C(A) with

vertices (U1, U2, . . . , Um), the pseudo parents of a vertex Uj is defined as

Pa′(j) := Pa({U1, U2, . . . Uj}) ∪ {U1, U2, . . . Uj−1} (5.11)

For any SMBN graph with in-degree at most d and c-components of size at most ℓ, the size

|Pa′(j)| is at most dℓ+ ℓ. Furthermore, note that the set Pa′(j) will always precede the vertex

Vj in any topological ordering of the graph.

The next lemma shows that the distribution of any c-component conditioned on its parents,

PzPa(C)
(zC), can be factorized into the distribution of individual vertices conditioned on its

pseudo parents. This allows us to extend the techniques used for the regret analysis of fully

observable graphs (Section 2.3.1) to the case of SMBNs. Intuitively, one can view the factor-

ization of an SMBN (under an intervention A) as a factorization over a fully observable graph

where each vertex Vj has the set Pa′(j) as its parents.

Lemma 5.7. For any intervention A and any c-component C ∈ C(A), consisting of vertices

{U1, U2 . . . Um}, we have

PzPa(C)
(zC) =

∏
j∈C

PA

(
zj | zPa′(j)

)
.

112

Here, Pa′(j) denotes the set of pseudo parents as defined in equation (5.11).

A proof of Lemma 5.7 appears in section 5.6.

Now, recall that the estimate µ̂(A) can be written as

µ̂ (A) =
∑

z∈Z(A)

∏
Ci∈C(A)

P̂zPa(Ci)
(zCi

)

=
∑

z∈Z(A)

∏
i∈C(A)

(
PA

(
zCi
| zPa(Ci)

)
+∆PA

(
zCi
| zPa(Ci)

))
= µ(A) +

∑
z∈Z(A)

(∑
Ci∈C(A)

∆PA

(
zCi
| zPa(Ci)

) ∏
Cj∈C(A),j ̸=i

PA

(
zCj
| zPa(Cj)

)
+

∑
U⊆C(A)
|U |=2

(∏
Ci∈U

∆PA

(
zCi
| zPa(Ci)

)) ∏
Cj∈C(A)\U

PA

(
zCj
| zPa(Cj)

)+

∑
U⊆C(A)
|U |=3

(∏
Ci∈U

∆PA

(
zCi
| zPa(Ci)

)) ∏
Cj∈C(A)\U

PA

(
zCj
| zPa(Cj)

)+ · · ·

)

(expanding product terms)

Here, ∆P () denotes the error in the estimate of the conditional probabilities. Let Lz repre-

sent all the product entries in the expansion that include more than one error term (∆P ()).

Specifically,

Lz =

|C(A)|∑
k=2

∑
U⊆C(A)
|U |=k

(∏
Ci∈U

∆PA

(
zCi
| zPa(Ci)

)) ∏
Cj∈C(A)\U

PA

(
zCj
| zPa(Cj)

)

=

|C(A)|∑
k=2

∑
U⊆C(A)
|U |=k

(∏
Ci∈U

∆PA

(
zCi
| zPa(Ci)

)) ∏
C∈C(A)\Ci,

j∈C

PA

(
zj | zPa′(j)

) (via Lemma 5.7)

We further represent all the entries with a single ∆P () term as

Hz =
∑

Ci∈C(A)

∆PA

(
zCi
| zPa(Ci)

) ∏
Ck∈C(A)

k ̸=i

PA

(
zCk
| zPa(Ck)

)
=

∑
Ci∈C(A)

∆PA

(
zCi
| zPa(Ci)

) ∏
j∈V(A)\Ci

PA

(
zj | zPa′(j)

)
(5.12)

113

Here, the last equality follows from Lemma 5.7. Hence, we have

µ̂(A)− µ(A) =
∑

z∈Z(A)

(Hz + Lz) (5.13)

We will establish upper bounds on the sums of Lzs and Hzs in Lemma 5.9 and Lemma 5.10,

respectively. These lemmas show that the sum of the H terms dominates the sum of L terms.

Furthermore, these bounds imply that the estimated reward µ̂(A) is sufficiently close to the

true expected reward µ(A) for each intervention A ∈ A.

Lemma 5.8. For estimates obtained via a covering intervention set I, as in Algorithm 9, write

E to denote the event that |∆PzPa(Ci)
(zCi

) | ≤
√

|I|(ℓd+ℓ+log(NT))
T

for all c-components Ci ∈ C(A)

and for all A ∈ A. Then, Pr {E} ≥
(
1− 2

T

)
.

Proof. Since I is a covering intervention set (see Defintion 5.2), for each distribution PzPa(i)
(zCi

),

we have at least T
|I| independent samples. Also, note that the total number of distributions to

be estimated is at most 2(ℓd+ℓ)N . This follows from the fact that each c-component—under

any intervention—is a subset of a c-component in the original graph G, and the number of

c-components in G is at most N . Hence, the number of possible distinct c-components (across

all intervention) is at most N2ℓ. Furthermore, each c-component can have at most ℓd parents

with at most 2ℓd distinct binary assignments to the parents.

With this count in hand, we invoke Lemma 5.2, with ε =
√

|I|(log (2ℓd+ℓNT))
T

and apply the

union bound over all (zCi
, zPa(Ci)) pairs. This gives us the desired probability bound and

completes the proof of the lemma.

Lemma 5.9. For estimates obtained via a covering intervention set I, the following event holds

with probability at least (1− 2
T
):∑

z∈Z(A)

|Lz| ≤ 4ℓ(Nη)2 for all A ∈ A.

Here, parameter η =
√

|I|(ℓd+ℓ+log(NT))
T

and T is moderately large.

Proof. We use the fact that each error term in Lz satisfies the bound stated in Lemma 5.8. More-

over, we use the graph structure to marginalize variables that do not appear in the error terms.

The idea is to split the sum
∑

z∈Z(A) into
∑

z[1:x1]

∑
z(x1:x2]

. . .
∑

z(xk:N]
, where {x1, x2 . . . , xk}

114

denotes all the indices in C(A) that show up as ∆P () in the expression for Lz.

∑
z∈Z(A)

|Lz| ≤
∑

z∈Z(A)

|C(A)|∑
k=2

∑
U⊆C(A)
|U |=k

(∏
Ci∈U

∣∣∆PA

(
zCi
| zPa(Ci)

)∣∣) ∏
Cj∈C(A)\U

PA

(
zCj
| zPa(Cj)

)

=

|C(A)|∑
k=2

∑
z∈Z(A)

∑
U⊆C(A)
|U |=k

(∏
Ci∈U

∣∣∆PA

(
zCi
| zPa(Ci)

)∣∣) ∏
Cj∈C(A)\U

PA

(
zCj
| zPa(Cj)

)

≤
|C(A)|∑
k=2

∑
U⊆C(A)
|U |=k

∑
z∈Z(A)

ηk

 ∏
Cj∈C(A)\U

PA

(
zCj
| zPa(Cj)

)
(via Lemma 5.8,

∣∣∆PA

(
zCi
| zPa(Ci)

)∣∣ ≤ η)

First, we upper bound each term considered in the outer-most sum. Towards this, let U de-

note the set of c-components that show up as ∆P (), we define X := ∪Ci∈UCi = {x1, x2, · · · , xm}
where xi denotes the vertex Vxi

∈ V(A). Note that since c-components are at most of size ℓ

and for |U | = k, we have |X| ≤ ℓk. Now, using Lemma 5.7, we obtain

∑
U⊆C(A)
|U |=k

∑
z∈Z(A)

ηk

 ∏
Cj∈C(A)\U

PA

(
zCj
| zPa(Cj)

)

=
∑

U⊆C(A)
|U |=k

∑
z∈Z(A)

ηk

 ∏
j∈V(A)\X

PA

(
zj | zPa′(j)

)

=
∑

U⊆C(A)
|U |=k

ηk
∑

z[1:x1]∈Z[1:x1]
(A)

 ∏
j∈V[1:x1)

(A)

PA

(
zj | zPa′(j)

) ∑
z(x1:x2]∈Z(x1:x1]

(A)

 ∏
j∈V(x1:x2)

(A)

PA

(
zj | zPa′(j)

) . . .

∑
z∈Z(xi:xi+1]

(A)

 ∏
i∈V(xi:xi+1)

(A)

PA

(
zj | zPa′(j)

) . . .
∑

z(xk:N]∈Z(xk:N](A)

 ∏
j∈V(xk:N](A)

PA

(
zj | zPa′(j)

)
(5.14)

The last term in the above expression can be bounded as follows

∑
z(xk:N]∈Z(xk:N](A)

 ∏
i∈V(xk:N](A)

PA

(
zj | zPa′(j)

) =
∑

z(xk:N]∈Z(xk:N](A)

Pdo(A)

[
V(xk:N](A) = z(xk:N]|Pa′(V(xk:N](A))

]

115

= Pdo(A)

[
VN = 1|Pa′

(
V(xk:N](A)

)]
≤ 1.

For all the other terms, we have the following bound

∑
z∈Z(xi:xi+1]

(A)

 ∏
i∈V(xi:xi+1)

(A)

PA

(
zj | zPa′(j)

)
=

∑
zxi+1∈{0,1}

∑
z(xi:xi+1)

∈Z(xi:xi+1)
(A)

 ∏
i∈V(xi:xi+1)

(A)

PA

(
zj | zPa′(j)

)
=

∑
zxi+1∈{0,1}

∑
z(xi:xi+1)

∈Z(xi:xi+1)
(A)

Pdo(A)

[
V(xi:xi+1)(A) = z(xi:xi+1)|Pa′

(
V(xi:xi+1)(A)

)]
≤

∑
zxi+1∈{0,1}

1

= 2.

Substituting in (5.14), we get

∑
U⊆C(A)
|U |=k

∑
z∈Z(A)

ηk

 ∏
Cj∈C(A)\U

PA

(
zCj
| zPa(Cj)

) ≤ ∑
U⊆C(A)
|U |=k

ηk 2ℓk (since |X| ≤ ℓk)

=

(
N

k

)(
2ℓη
)k

.

Therefore, the sum
∑

z∈Z(A) |Lz| satisfies

∑
z∈Z(A)

|Lz| ≤
N∑
k=2

(
N

k

)(
2ℓη
)k

=
N∑
k=0

(
N

k

)(
2ℓη
)k − 2ℓNη − 1

= (1 + 2ℓη)N − 2ℓNη − 1

≤ e2
ℓNη − 2ℓNη − 1

≤ 1 + 2ℓNη + (2ℓNη)2 − 2ℓNη − 1 (with η ≤ 1
2ℓN

)

≤ 4ℓN2η2.

116

The lemma stands proved.

Lemma 5.10. For estimates obtained via a covering intervention set I, the following event

holds with probability at least 1− 2
T
:∣∣∣∣∣∣

∑
z∈Z(A)

Hz

∣∣∣∣∣∣ ≤
√

N 4ℓ 2d |I| log (|A|T)
T

for all A ∈ A.

Proof. Equation (5.12) gives us∣∣∣∣∣∣
∑

z∈Z(A)

Hz

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑

Ci∈C(A)

∑
z∈Z(A)

∆PA

(
zCi
| zPa(Ci)

) ∏
j∈V(A)\Ci

PA

(
zj | zPa′(j)

)∣∣∣∣∣∣ .
Let X := {x1, x2 · · ·xm} be the vertices in a c-component Ci considered in the outer summation.

Furthermore, for ease of exposition, write (xk : xk+1)
′ := (xk : xk+1) \ Pa(Ci), i.e., the set

(xk : xk+1)
′ excludes the parents of the c-component Ci. We have∣∣∣∣∣∣

∑
z∈Z(A)

Hz

∣∣∣∣∣∣
=

∣∣∣∣∣ ∑
Ci∈C(A)

∑
zPa(Ci)

∈
ZPa(Ci)

(A)

∑
zCi

∈
ZCi

(A)

∆PA

(
zCi
| zPa(Ci)

) ∑
z[1:x1)′

∈
Z[1:x1)

′ (A)

∏
j1∈V[1:x1)

(A)

P
(
zj1 | zPa′(j1)

)
∑

z(x1:x2)′
∈

Z(x1:x2)
′ (A)

∏
j2∈V(x1:x2)

(A)

PA

(
zj2 | zPa′(j2)

)
. . .

∑
z(xk:xk+1)′∈

Z(xk:xk+1)
′ (A)

∏
j2∈V(xk:xk+1)

(A)

PA

(
zjk | zPa′(jk)

)
. . .

∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
∑

Ci∈C(A)

∑
zPa(Ci)

∈
ZPa(Ci)

(A)

∑
zCi

∈
ZCi

(A)

∆PA

(
zCi
| zPa(Ci)

)
ci
(
zCi

, zPa(Ci)

)
∣∣∣∣∣∣∣∣∣ .

Here,

ci(zCi
, zPa(Ci)) :=∑

z[1:x1)′
∈

Z[1:x1)
′ (A)

∏
j1∈V[1:x1)

(A)

PA

(
zj | zPa′(j1)

) ∑
z(x1:x2)′

∈
Z(x1:x2)

′ (A)

∏
j2∈V(x1:x2)

(A)

PA

(
zj2 | zPa′(j2)

)
· · ·

117

∑
z(xk:xk+1)′∈

Z(xk:xk+1)
′ (A)

∏
jk∈V(xk:xk+1)

(A)

PA

(
zjk | zPa′(jk)

)
· · ·

∑
z(xm:N]′∈

Z(xm:N]′ (A)

∏
jm∈V(xk:xk+1)

(A)

PA

(
zjm | zPa′(jm)

)
.

We show in Claim 5.2 (proved below) that ci(zCi
, zPa(Ci)) ≤ 1. Therefore,

∣∣∣∣∣∣
∑

z∈Z(A)

Hz

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣∣
∑

Ci∈C(A)

∑
zPa(Ci)

∈
ZPa(Ci)

(A)

∑
zCi

∈
ZCi

(A)

∆P
(
zCi
| zPa(Ci)

)
)

∣∣∣∣∣∣∣∣∣ (5.15)

Since I is a covering intervention set, for each pair (Ci, zPa(Ci)), there exits an intervention

I ∈ I such that intervening do(I) provides a sample for the distribution P[VCi
| do(Pa(Ci) =

zPa(Ci))]. Hence, we have at least T
|I| samples for the distribution P[VCi

| do(Pa(Ci) = zPa(Ci))].

We represent the sth sample for the distribution by indicator random variable Ys(zCi
, zPa(Ci))

which takes value one when VCi
= zCi

, else its zero. Hence, inequality (5.15) reduces to

∣∣∣∣∣∣
∑

z∈Z(A)

Hz

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣∣
∑

Ci∈V(A)

∑
zPa(Ci)

∈
ZPa(Ci)

(A)

|I|
T

T/|I|∑
s=1

 ∑
zCi

∈ZCi
(A)

Ys(zCi
, zPa(Ci))− PA

(
zCi
| zPa(Ci)

)
∣∣∣∣∣∣∣∣∣ .

In the above expression, the term
∑

zCi
∈ZCi

(A) Ys(zCi
, zPa(Ci))−PA

(
zCi
| zPa(Ci)

)
is an inde-

pendent random quantity bounded between [−2|Ci|, 2|Ci|]. We now apply Heoffding’s inequality

(Lemma 5.2)

Pdo(A)

∣∣∣∣∣∣
∑

z∈Z(A)

Hz

∣∣∣∣∣∣ ≥ ε

 ≤ 2exp

(
−Tε2

2|I|
∑

Ci∈C(A)

∑
zPa(i)∈zPa(i)

22|Ci|

)

≤ 2exp

(
−Tε2

2|I|
∑

Ci∈C(A)

∑
zPa(i)∈zPa(i)

22ℓ

)
≤ 2exp

(
−Tε2

2|I|N2ℓd · 22ℓ

)
.

Setting ε =
√

2N |I| 2ℓd 4ℓ log (|A|·T)
T

and taking union bound over all of A ∈ A, gives us the

required probability bound. This completes the proof of the lemma.

We next establish the claim used in the proof of Lemma 5.10.

Claim 5.2.

ci(zCi
, zPa(Ci)) ≤ 1.

118

Proof. It holds that

ci(zCi
, zPa(Ci)) =∑

z[1:x1)′
∈

Z[1:x1)
′ (A)

∏
j1∈V[1:x1)

(A)

PA

(
zj | zPa′(j)

) ∑
z(x1:x2)′

∈
Z(x1:x2)

′ (A)

∏
j2∈V(x1:x2)

(A)

PA

(
zj2 | zPa′(j2)

)
· · ·

∑
z(xk:xk+1)′∈

Z(xk:xk+1)
′ (A)

∏
jk∈V(xk:xk+1)

(A)

PA

(
zjk | zPa′(jk)

)
· · ·

∑
z(xm:N]′∈

Z(xm:N]′ (A)

∏
jk∈V(xk:xk+1)

(A)

PA

(
zjk | zPa′(jk)

)

We can upper bound each term in the above expression as shown below,∑
z(xk:xk+1)′∈

Z(xk:xk+1)
′ (A)

∏
jk∈V(xk:xk+1)

(A)

PA

(
zjk | zPa′(jk)

)

=
∑

z(xk:xk+1)′∈
Z(xk:xk+1)

(A)

Pdo(A)

[
V(xk:xk+1)(A) = z(xk:xk+1)|Pa′(xk : xk+1)

]

= Pdo(A)

[
V(xk:xk+1)∩Pa(Ci)(A) = z(xk:xk+1)∩Pa(Ci)|Pa′(xk : xk+1)

]
≤ 1.

Substituting this in the expression for ci(zCi
, zPa(Ci)), we get the required bound.

5.5.2 Proof of Theorem 5.2

Lemma 5.6 implies that, with probability at least
(
1− 1

T

)
, the set I is indeed a covering

intervention set for the graph G. We combine this guarantee with Lemmas 5.9 and 5.10. In

particular, with probability at least
(
1− 5

T

)
, we have, for all A ∈ A:

|µ(A)− µ̂(A)| =

∣∣∣∣∣∣
∑

z∈Z(A)

(Hz + Lz)

∣∣∣∣∣∣
≤
√

N 4ℓ 2d |I| log (|A|T)
T

+
4ℓN2|I|(ℓd+ ℓ+ log (NT))

T

≤ 2

√
N 4ℓ 2d |I| log(|A|T)

T
(For T ≳ N3)

Let AT be the output after T rounds of interventions, i.e., AT = argmaxA∈A µ̂(A). In addition,

let A∗ = argmaxA∈A µ(A) be the optimal intervention. Hence, with probability at least 1− 5
T

119

we have,

µ(A∗)− µ(AT) ≤ 4

√
N 4ℓ 2d |I| log(|A|T)

T
(5.16)

This gives the desired upper bound on the simple regret, RT :

RT = E [µ(A∗)− µ(AT)] ≤

(
4

√
N 4ℓ 2d |I| log(|A|T)

T

)(
1− 5

T

)
+

5

T
≤ 5

√
N 4ℓ 2d |I| log(|A|T)

T
.

For SMBNs, since the size of the covering intervention set satisfies |I| = (3d)ℓ ·2ℓd(logN +2ℓd+

log T) (see Lemma 5.6), we also have the following explicit form of the simple regret bound

RT = O

(√
N (3d 8d)ℓ log |A|

T
log T

)
.

The theorem stands proved.

5.6 Missing Proof from Section 5.5.1

This section provides a proof of Lemma 5.7.

Lemma 5.7. For any intervention A and any c-component C ∈ C(A), consisting of vertices

{U1, U2 . . . Um}, we have

PzPa(C)
(zC) =

∏
j∈C

PA

(
zj | zPa′(j)

)
.

Here, Pa′(j) denotes the set of pseudo parents as defined in equation (5.11).

Proof. First, note that intervening on parent vertices of a c-component (under intervention A)

is the same as conditioning on them. Specifically,

PzPa(C)
(zC) = PA

(
zC | zPa(C)

)
Further, the chain rule of conditional probability gives us

PA

(
zC | zPa(C)

)
=
∏
j∈C

Pdo(A)

[
Uj = zj | Pa(C) = zPa(C), (U1 . . . Uj−1) = z(U1...Uj−1)

]
Next, we use the notion of d-separation (see [Pea09]) to argue that conditioning on just the

set Pa′(j) is sufficient. In particular, note that the set Y = Pa({Uj+1 . . . Um}) is d-separated

120

from vertex Uj by the set X = Pa({U1 . . . Uj}) ∪ ({U1 . . . Uj−1}). This is due to the fact that

all paths from a vertex in Y to Uj are either blocked by a collider vertex in {Uj+1 . . . Um} (and
the collider vertex is not included X), or the path is blocked by a vertex in X. This implies

that conditioned on X, Uj is independent of all vertices in Y [Pea09]. Formally, we write

Pdo(A)

[
Uj = zj | Pa(C) = zPa(C), (U1 . . . Uj−1) = z(U1...Uj−1)

]
= Pdo(A)[Uj = zj | Pa(U1 . . . Uj−1) = zPa(U1...Uj),Pa(Uj+1 . . . Um) = zPa(Uj+1...Um), (U1 . . . Uj−1) = z(U1...Uj−1)]

= Pdo(A)

[
Uj = zj | Pa(U1 . . . Uj−1) = zPa(U1...Uj), (U1 . . . Uj−1) = z(U1...Uj−1)

]
(since Pa({U1 . . . Uj}) ∪ {U1 . . . Uj−1} d-separates Uj from Pa({Uj+1 . . . Um}))

= Pdo(A) [Uj = zj | Pa′(j)] (by definition of Pa′(j))

Therefore,

PzPa(C)
(zC) = PA

(
zC | zPa(C)

)
=
∏
j∈C

Pdo(A)

[
Vj = zj | Pa′(j) = zPa′(j)

]
=
∏
j∈C

PA

(
zj | zPa′(j)

)
This completes the proof of the lemma.

5.7 Experiments

This section provides empirical evaluations of our algorithm. In the experiments, we compare

our algorithm, CoveringInterventions (Algorithm 9) with PropInf, the propagating infer-

ence algorithm of Yabe et al. [YHS+18]. As in implementation of [YHS+18] (see Section 5 of the

cited paper), we uniformly sample and do not explicitly solve their proposed optimization prob-

lem. The source code of our implementations is available at https://github.com/sawarniayush/learning-

good-interventions-using-covering

For the experiments, we consider a causal graph G = (V, E) (over Bernoulli random vari-

ables) with number of nodes (variables) N = |V| = 17 and in-degree d = 4. The vertex set V

is partitioned into four subsets with cardinalities |V1| = 7, |V2| = 5, |V3| = 4, and |V4| = 1,

respectively. Here, the singleton V4 consists of the reward variable, which is connected to all the

4 nodes in V3. Furthermore, the graph G is layered in the sense that, for each index ℓ ∈ {2, 3, 4}
and each node Vi ∈ Vℓ, the parents Pa(i) ⊂ Vℓ−1. Also, V1 is the set of leaf vertices – the

vertices in V1 do not have any incoming edges.

121

https://github.com/sawarniayush/learning-good-interventions-using-covering
https://github.com/sawarniayush/learning-good-interventions-using-covering

0 5000 10000 15000 20000 25000 30000 35000 40000
Time Horizon (T)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Si
m

pl
e

Re
gr

et

CoveringInterventions
PropInf

Figure 5.1: figure
Plot of simple regret with rounds of exploration.

For each non-reward variable, Vi, we set the condition probability P {Vi = 1 | Pa(i) = 1} =
0.8. That is, when all the parents of Vi are equal to 1,1 then Vi = 1, with probability 0.8. For

any other realization of the parents, the conditional probability of Vi = 1 is set to be 0.4, i.e.,

P {Vi = 1 | Pa(i) ̸= 1} = 0.4. For the reward node V17 we have P {V17 = 1 | Pa(17) = 1} = 0.9

and P {V17 = 1 | Pa(17) ̸= 1} = 0.4.

The set of interventions A is composed of all possible interventions on the leaf nodes,

A = {do(V1 = s) | s ∈ {0, 1}7}; recall that |V1| = 7. Note that setting each leaf node to 1

yields the optimal intervention A∗ = do(V1 = 1).

Simple Regret vs. Time: In our experiments, for the two algorithms, we compare the simple

regret with time horizon T . In particular, for each relevant T , we execute the two algorithms

140 times and average the simple regret across these runs. We plot our results in Figure 5.1

and show that CoveringInterventions converges to low regret faster than PropInf.

Runtime: For this experimental setup, CoveringInterventions ran at least 8 times faster

1Recall that intervening on all parent nodes of a vertex is the same as conditioning on them.

122

than PropInf across all the executions.1 This runtime gap between the two implementations,

highlights that CoveringInterventions scales better with the number of variables N .

5.8 Conclusion and Future Work

Using the idea of covering interventions, this chapter obtains improved simple regret guarantees

for the causal bandit problem. We also generalize the guarantee to causal graphs with unob-

served variables. Notably, and in contrast to prior works, our regret guarantees only depend

on the explicit problem parameters. Our experiments empirically highlight that our algorithm

provides improvements over baselines. Establishing lower bounds in the general causal bandit

setup is an important direction of future work. It is also interesting to develop computationally

efficient (simple regret) algorithms for settings in which the target set A is large and implicitly

specified.

1The computation of the β parameters is a time consuming step in PropInf.

123

Bibliography

[ABDK18] Jayadev Acharya, Arnab Bhattacharyya, Constantinos Daskalakis, and Saravanan

Kandasamy. Learning and testing causal models with interventions. Advances in

Neural Information Processing Systems, 31, 2018. 96, 98, 100, 101, 102, 111

[ACBFS02] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The non-

stochastic multiarmed bandit problem. SIAM journal on computing, 32(1):48–77,

2002. 9

[AG13] Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with

linear payoffs. In International conference on machine learning, pages 127–135.

PMLR, 2013. 63

[AJK21] Shubhada Agrawal, Sandeep K Juneja, and Wouter M Koolen. Regret minimiza-

tion in heavy-tailed bandits. In Conference on Learning Theory, pages 26–62.

PMLR, 2021. 48

[AOM17] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret

bounds for reinforcement learning. In International Conference on Machine Learn-

ing, pages 263–272. PMLR, 2017. 97

[AYPS11] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for

linear stochastic bandits. Advances in neural information processing systems, 24,

2011. 85

[BBLB20a] Ilai Bistritz, Tavor Baharav, Amir Leshem, and Nicholas Bambos. My fair bandit:

Distributed learning of max-min fairness with multi-player bandits. In Interna-

tional Conference on Machine Learning, pages 930–940. PMLR, 2020. 10

[BBLB20b] Ilai Bistritz, Tavor Baharav, Amir Leshem, and Nicholas Bambos. My fair bandit:

Distributed learning of max-min fairness with multi-player bandits. In Interna-

tional Conference on Machine Learning, pages 930–940. PMLR, 2020. 49

124

BIBLIOGRAPHY

[BCS14] Guy Bresler, George H Chen, and Devavrat Shah. A latent source model for

online collaborative filtering. Advances in neural information processing systems,

27, 2014. 2

[BKMS22] Siddharth Barman, Arindam Khan, Arnab Maiti, and Ayush Sawarni. Fair-

ness and welfare quantification for regret in multi-armed bandits. arXiv preprint

arXiv:2205.13930, 2022. 53, 56

[BPQC+13] Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X Charles, D Max

Chickering, Elon Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. Coun-

terfactual reasoning and learning systems: The example of computational adver-

tising. Journal of Machine Learning Research, 14(11), 2013. 4

[BS10] Dirk Bergemann and Maher Said. Dynamic auctions: A survey. 2010. 2

[CCLY19] Michael B Cohen, Ben Cousins, Yin Tat Lee, and Xin Yang. A near-optimal

algorithm for approximating the john ellipsoid. In Conference on Learning Theory,

pages 849–873. PMLR, 2019. 60

[CKD+15] Pascal Caillet, Sarah Klemm, Michel Ducher, Alexandre Aussem, and Anne-Marie

Schott. Hip fracture in the elderly: a re-analysis of the epidos study with causal

bayesian networks. PLoS One, 10(3):e0120125, 2015. 4

[CKM+19] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D Procaccia, Nisarg

Shah, and Junxing Wang. The unreasonable fairness of maximum nash welfare.

ACM Transactions on Economics and Computation (TEAC), 7(3):1–32, 2019. 10,

49

[CKSV19] L Elisa Celis, Sayash Kapoor, Farnood Salehi, and Nisheeth Vishnoi. Controlling

polarization in personalization: An algorithmic framework. In Proceedings of the

conference on fairness, accountability, and transparency, pages 160–169, 2019. 10

[DB15] Arnoud V Den Boer. Dynamic pricing and learning: historical origins, current

research, and new directions. Surveys in operations research and management

science, 20(1):1–18, 2015. 1

[DP09] Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for the

analysis of randomized algorithms. Cambridge University Press, 2009. 33

125

BIBLIOGRAPHY

[Eck93] Jürgen Eckhoff. Helly, radon, and carathéodory type theorems. In Handbook of

convex geometry, pages 389–448. Elsevier, 1993. 54

[EG59] Edmund Eisenberg and David Gale. Consensus of subjective probabilities: The

pari-mutuel method. The Annals of Mathematical Statistics, 30(1):165–168, 1959.

10

[Git79] John C Gittins. Bandit processes and dynamic allocation indices. Journal of the

Royal Statistical Society: Series B (Methodological), 41(2):148–164, 1979. 1

[GLS12] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms

and combinatorial optimization, volume 2. Springer Science & Business Media,

2012. 52

[H+16] Elad Hazan et al. Introduction to online convex optimization. Foundations and

Trends® in Optimization, 2(3-4):157–325, 2016. 92, 93

[HMS21a] Safwan Hossain, Evi Micha, and Nisarg Shah. Fair algorithms for multi-agent

multi-armed bandits. Advances in Neural Information Processing Systems, 34,

2021. 10

[HMS21b] Safwan Hossain, Evi Micha, and Nisarg Shah. Fair algorithms for multi-

agent multi-armed bandits. Advances in Neural Information Processing Systems,

34:24005–24017, 2021. 49

[How97] Ralph Howard. The john ellipsoid theorem. University of South Carolina, 1997.

48

[JKMR16a] Matthew Joseph, Michael Kearns, Jamie H Morgenstern, and Aaron Roth. Fair-

ness in learning: Classic and contextual bandits. Advances in neural information

processing systems, 29, 2016. 10

[JKMR16b] Matthew Joseph, Michael Kearns, Jamie H Morgenstern, and Aaron Roth. Fair-

ness in learning: Classic and contextual bandits. Advances in neural information

processing systems, 29, 2016. 49

[KEG17] Daniel Koch, Robert S Eisinger, and Alexander Gebharter. A causal bayesian

network model of disease progression mechanisms in chronic myeloid leukemia.

Journal of theoretical biology, 433:94–105, 2017. 4

126

BIBLIOGRAPHY

[KN79] Mamoru Kaneko and Kenjiro Nakamura. The nash social welfare function. Econo-

metrica: Journal of the Econometric Society, pages 423–435, 1979. 10

[KQ21] William Kuszmaul and Qi Qi. The multiplicative version of azuma’s inequality,

with an application to contention analysis. arXiv preprint arXiv:2102.05077, 2021.

56

[KW60] Jack Kiefer and Jacob Wolfowitz. The equivalence of two extremum problems.

Canadian Journal of Mathematics, 12:363–366, 1960. 51

[LKG16] Shuai Li, Alexandros Karatzoglou, and Claudio Gentile. Collaborative filtering

bandits. In Proceedings of the 39th International ACM SIGIR conference on Re-

search and Development in Information Retrieval, pages 539–548, 2016. 2

[LLR16] Finnian Lattimore, Tor Lattimore, and Mark D Reid. Causal bandits: Learning

good interventions via causal inference. Advances in Neural Information Processing

Systems, 29, 2016. 4, 97

[LMT21] Yangyi Lu, Amirhossein Meisami, and Ambuj Tewari. Causal bandits with un-

known graph structure. Advances in Neural Information Processing Systems,

34:24817–24828, 2021. 97

[LMT22] Yangyi Lu, Amirhossein Meisami, and Ambuj Tewari. Efficient reinforcement

learning with prior causal knowledge. In Conference on Causal Learning and Rea-

soning, pages 526–541. PMLR, 2022. 97

[LMTY20] Yangyi Lu, Amirhossein Meisami, Ambuj Tewari, and William Yan. Regret anal-

ysis of bandit problems with causal background knowledge. In Conference on

Uncertainty in Artificial Intelligence, pages 141–150. PMLR, 2020. 97

[LS20] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University

Press, 2020. 2, 9, 12, 13, 19, 42, 48, 51, 56, 60, 80

[LWB+18] Sujee Lee, Sijie Wang, Philip A Bain, Christine Baker, Tammy Kundinger, Craig

Sommers, and Jingshan Li. Reducing copd readmissions: A causal bayesian net-

work model. IEEE Robotics and Automation Letters, 3(4):4046–4053, 2018. 4

[LZ07] John Langford and Tong Zhang. The epoch-greedy algorithm for contextual multi-

armed bandits. Advances in neural information processing systems, 20(1):96–1,

2007. 2

127

BIBLIOGRAPHY

[MNS22] Aurghya Maiti, Vineet Nair, and Gaurav Sinha. A causal bandit approach to

learning good atomic interventions in presence of unobserved confounders. In

Uncertainty in Artificial Intelligence, pages 1328–1338. PMLR, 2022. 4, 96, 97

[Mou04] Hervé Moulin. Fair division and collective welfare. MIT press, 2004. 2, 3, 10, 46

[MY16] Andres Munoz Medina and Scott Yang. No-regret algorithms for heavy-tailed

linear bandits. In International Conference on Machine Learning, pages 1642–

1650. PMLR, 2016. 48

[NJ50] John F Nash Jr. The bargaining problem. Econometrica: Journal of the econo-

metric society, pages 155–162, 1950. 10

[NPS21] Vineet Nair, Vishakha Patil, and Gaurav Sinha. Budgeted and non-budgeted

causal bandits. In International Conference on Artificial Intelligence and Statistics,

pages 2017–2025. PMLR, 2021. 97

[PACJ07] Sandeep Pandey, Deepak Agarwal, Deepayan Chakrabarti, and Vanja Josifovski.

Bandits for taxonomies: A model-based approach. In Proceedings of the 2007

SIAM International Conference on Data Mining, pages 216–227. SIAM, 2007. 2

[Pea00] Judea Pearl. Causality: Models, reasoning and inference. Cambridge, UK: Cam-

bridgeUniversityPress, 19(2), 2000. 96

[Pea09] Judea Pearl. Causality. Cambridge university press, 2009. 4, 120, 121

[PGNN20] Vishakha Patil, Ganesh Ghalme, Vineet Nair, and Y Narahari. Achieving fair-

ness in the stochastic multi-armed bandit problem. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 34, pages 5379–5386, 2020. 10

[PGNN21] Vishakha Patil, Ganesh Ghalme, Vineet Nair, and Yadati Narahari. Achieving

fairness in the stochastic multi-armed bandit problem. The Journal of Machine

Learning Research, 22(1):7885–7915, 2021. 49

[RKJ08] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. Learning diverse rank-

ings with multi-armed bandits. In Proceedings of the 25th international conference

on Machine learning, pages 784–791, 2008. 2

[S+19] Aleksandrs Slivkins et al. Introduction to multi-armed bandits. Foundations and

Trends® in Machine Learning, 12(1-2):1–286, 2019. 2

128

BIBLIOGRAPHY

[SBF17] Eric M Schwartz, Eric T Bradlow, and Peter S Fader. Customer acquisition via

display advertising using multi-armed bandit experiments. Marketing Science,

36(4):500–522, 2017. 2, 10

[Sev20] Jaime Sevilla. Explaining data using causal bayesian networks. In 2nd Workshop

on Interactive Natural Language Technology for Explainable Artificial Intelligence,

pages 34–38, 2020. 4

[SSDS17] Rajat Sen, Karthikeyan Shanmugam, Alexandros G Dimakis, and Sanjay Shakkot-

tai. Identifying best interventions through online importance sampling. In Inter-

national Conference on Machine Learning, pages 3057–3066. PMLR, 2017. 97

[SSK+17] Rajat Sen, Karthikeyan Shanmugam, Murat Kocaoglu, Alex Dimakis, and Sanjay

Shakkottai. Contextual bandits with latent confounders: An nmf approach. In

Artificial Intelligence and Statistics, pages 518–527. PMLR, 2017. 97

[SV14] Aleksandrs Slivkins and Jennifer Wortman Vaughan. Online decision making

in crowdsourcing markets: Theoretical challenges. ACM SIGecom Exchanges,

12(2):4–23, 2014. 2

[Tho33] William R Thompson. On the likelihood that one unknown probability exceeds

another in view of the evidence of two samples. Biometrika, 25(3-4):285–294, 1933.

1

[TM17] Ambuj Tewari and Susan A Murphy. From ads to interventions: Contextual ban-

dits in mobile health. Mobile Health: Sensors, Analytic Methods, and Applications,

pages 495–517, 2017. 1

[Tod16] Michael J Todd. Minimum-volume ellipsoids: Theory and algorithms. SIAM, 2016.

60

[TP02] Jin Tian and Judea Pearl. On the testable implications of causal models with

hidden variables. In Proceedings of the Eighteenth conference on Uncertainty in

artificial intelligence, pages 519–527, 2002. 110

[Var74] Hal R Varian. Equity, envy, and efficiency. Journal of Economic Theory, 9(1):63–

91, 1974. 10

[VB22] Yogatheesan Varatharajah and Brent Berry. A contextual-bandit-based approach

for informed decision-making in clinical trials. Life, 12(8):1277, 2022. 1

129

BIBLIOGRAPHY

[VBW15] Sofia Villar, Jack Bowden, and James Wason. Multi-armed bandit models for

the optimal design of clinical trials: Benefits and challenges. Statistical Science,

30:199–215, 05 2015. 1

[VSST22] Burak Varici, Karthikeyan Shanmugam, Prasanna Sattigeri, and Ali Tajer. Causal

bandits for linear structural equation models. arXiv preprint arXiv:2208.12764,

2022. 97

[XC23] Nuoya Xiong and Wei Chen. Combinatorial pure exploration of causal bandits. In

International Conference on Learning Representations, 2023. 96, 97

[YHS+18] Akihiro Yabe, Daisuke Hatano, Hanna Sumita, Shinji Ito, Naonori Kakimura,

Takuro Fukunaga, and Ken-ichi Kawarabayashi. Causal bandits with propagating

inference. In International Conference on Machine Learning, pages 5512–5520.

PMLR, 2018. 96, 121

[YN12] Takami Yoshida and Kazuhiro Nakadai. Active audio-visual integration for voice

activity detection based on a causal bayesian network. In 2012 12th IEEE-RAS

International Conference on Humanoid Robots (Humanoids 2012), pages 370–375.

IEEE, 2012. 4

130

	Acknowledgements
	Abstract
	Publications based on this Thesis
	Contents
	1 Introduction
	1.1 A Welfarist Perspective on the MAB Framework
	1.2 Learning in Causal Bayesian Networks
	1.3 Problem Definitions
	1.3.1 Stochastic Multi-armed Bandits
	1.3.2 Online Learning with Full-feedback
	1.3.3 Linear Bandits
	1.3.4 Causal Bandits

	1.4 Overview of the Thesis

	2 Nash Regret Bounds for Stochastic MAB
	2.1 Results and Techniques
	2.1.1 Additional Related Work and Application

	2.2 Notation and Preliminaries
	2.3 The Nash Confidence Bound Algorithm
	2.3.1 Regret Analysis
	2.3.2 Proof of Theorem 2.1

	2.4 Improved and Anytime Guarantees for Nash Regret
	2.4.1 Modified Nash Confidence Bound Algorithm
	2.4.2 Improved Guarantee for Nash Regret
	2.4.3 Anytime Algorithm
	2.4.4 Proof of Theorem 2.3

	2.5 Missing Proofs from Section 2.3.1
	2.5.1 Proof of Lemma 2.1
	2.5.2 Proof of Claim 2.1
	2.5.3 Proofs of Lemma 2.2 and 2.3

	2.6 Missing Proofs from Section 2.4.1
	2.6.1 Proof of Lemma 2.5
	2.6.2 Proof of Supporting Lemmas

	2.7 Other Formulations of Nash Regret
	2.8 Counterexample for the UCB algorithm
	2.9 Conclusion and Future Work

	3 Nash Regret Bounds for Linear Bandits
	3.1 Our Contributions and Techniques.
	3.2 Problem Formulation and Preliminaries
	3.2.1 Sub-Poisson Rewards
	3.2.2 Optimal Design.
	3.2.3 John Ellipsoid.

	3.3 Our Algorithm LinNash and Main Results
	3.3.1 Part I: Sampling via John Ellipsoid and Kiefer-Wolfowitz Optimal Design
	3.3.2 Part II: Phased Elimination via Estimate Dependent Confidence Widths
	3.3.3 Main Result

	3.4 Extension of Algorithm LinNash for Infinite Arms
	3.5 Experiments
	3.6 Proof of Lemmas 3.1 and 3.2
	3.7 Proof of Concentration Bounds
	3.8 Regret Analysis of Algorithm 5: Proofs of Lemmas 3.7 and 3.8
	3.8.1 Supporting Lemmas
	3.8.2 Proofs of Lemmas 3.7 and 3.8

	3.9 Regret Analysis of Algorithm 6
	3.10 Conclusion and Future Work

	4 Full Feedback with Adversarial Rewards
	4.1 Prediction with Expert Advice
	4.1.1 Lower Bound

	4.2 Online Concave Optimization

	5 Learning Good Interventions in Causal Bayesian Networks
	5.1 Our Contributions
	5.2 Additional Related Work
	5.3 Notation and Preliminaries
	5.4 Finding Near-Optimal Intervention via Covering
	5.4.1 Regret Analysis
	5.4.2 Proof of Theorem 5.1

	5.5 Algorithm for Graphs with Unobserved Variables
	5.5.1 Regret Analysis for SMBNs
	5.5.2 Proof of Theorem 5.2

	5.6 Missing Proof from Section 5.5.1
	5.7 Experiments
	5.8 Conclusion and Future Work

	Bibliography

